insensitive munitions
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Lee Moores ◽  
Alan Kennedy ◽  
Lauren May ◽  
Shinita Jordan ◽  
Anthony Bednar ◽  
...  

Degradation of insensitive munitions (IMs) by ultraviolet (UV) light has become a concern following observations that some UV-degradation products have increased toxicity relative to parent compounds in aquatic organisms. This investigation focused on the Army's IM formulation, IMX-101, composed of three IM constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). The IM constituents and IMX-101 were irradiated in a UV photo-reactor and then administered to Daphnia pulex in acute (48 h) exposures comparing toxicities relative to the parent materials. UV-degradation of DNAN had little effect on mortality whereas mortality for UV-degraded NTO and NQ increased by factors of 40.3 and 1240, making UV-degraded NQ the principle driver of toxicity when IMX-101 is UV-degraded. Toxicity investigations for specific products formed during UV-degradation of NQ, confirmed greater toxicity than the parent NQ for degradation products. Summation of the individual toxic units for the complete set of individually measured UV-degradation products identified for NQ only accounted for 25% of the overall toxicity measured in the exposures to the UV-degraded NQ product mixture. Given the underestimation of toxicity using the sum toxic units for the individually measured UV-degradation products of NQ, we conclude that: (1) other unidentified NQ degradation products contributed principally to toxicity and/or (2) synergistic toxicological interactions occurred among the NQ degradation product mixture that exacerbated toxicity.


Author(s):  
Natanna Melo ◽  
Osmar Menezes ◽  
Matheus Paraiso ◽  
Lourdinha Florêncio ◽  
Mário T. Kato ◽  
...  

Abstract 2,4-Dinitroanisole (DNAN) is a toxic compound increasingly used by the military that can be released to the environment on the soil of training fields and in the wastewater of manufacturing plants. DNAN's nitro groups are anaerobically reduced to amino groups by microorganisms when electron donors are available. Using anaerobic sludge as inoculum, we tested different electron donors for DNAN bioreduction at 20 and 30 °C: acetate, ethanol, pyruvate, hydrogen, and hydrogen + pyruvate. Biotic controls without external electron donors and abiotic controls with heat-killed sludge were also assayed. No DNAN conversion was observed in the abiotic controls. In all biotic treatments, DNAN was reduced to 2-methoxy-5-nitroaniline (MENA), which was further reduced to 2,4-diaminoanisole (DAAN). Ethanol or acetate did not increase DNAN reduction rate compared to the endogenous control. The electron donors that caused the fastest DNAN reductions were (rates at 30 °C): H2 and pyruvate combined (311.28 ± 10.02 μM·d−1·gSSV−1), followed by H2 only (207.19 ± 5.95 μM·d−1·gSSV−1), and pyruvate only (36.35 ± 2.95 μM·d−1·gSSV−1). Raising the temperature to 30 °C improved DNAN reduction rates when pyruvate, H2, or H2 + pyruvate were used as electrons donors. Our results can be applied to optimize the anaerobic treatment of DNAN-containing wastewater.


Author(s):  
Camila L. Madeira ◽  
Osmar Menezes ◽  
Doyoung Park ◽  
Kalyani V. Jog ◽  
Janet K. Hatt ◽  
...  

2021 ◽  
Author(s):  
Timothy C. Schutt ◽  
Manoj K. Shukla

Humic acid substances (HAs) in natural soil and sediment environments effect the retention and degradation of insensitive munitions compounds and legacy high explosives (MCs): DNAN, DNi- NH4+, nMNA, NQ, NTO (neutral and anionic forms), TNT, and RDX.A humic acid model compound has been considered using molecular dynamics, thermodynamic integration, and density functional theory to characterize the munition binding ability, ionization potential, and electron affinity compared to that in the water solution. Humic acids bind most compounds and act as both a sink and source for electrons. Ionization potentials suggest HAs are more susceptible to oxidation than the MCs studied. The electron affinity of HAs are very conformation-dependent and spans the same range as the munition compounds. When HAs and MCs are complexed the HAs tend to radicalize first thus buffering MCs against reductive as well as oxidative attacks.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 74
Author(s):  
Abhishek RoyChowdhury ◽  
Pallabi Mukherjee ◽  
Saumik Panja ◽  
Rupali Datta ◽  
Christos Christodoulatos ◽  
...  

The use of insensitive munitions such as 3-nitro-1,2,4-triazol-5-one (NTO) is rapidly increasing and is expected to replace conventional munitions in the near future. Various NTO treatment technologies are being developed for the treatment of wastewater from industrial munition facilities. This is the first study to explore the potential phytoremediation of industrial NTO-wastewater using vetiver grass (Chrysopogon zizanioides L.). Here, we present evidence that vetiver can effectively remove NTO from wastewater, and also translocated NTO from root to shoot. NTO was phytotoxic and resulted in a loss of plant biomass and chlorophyll. The metabolomic analysis showed significant differences between treated and control samples, with the upregulation of specific pathways such as glycerophosphate metabolism and amino acid metabolism, providing a glimpse into the stress alleviation strategy of vetiver. One of the mechanisms of NTO stress reduction was the excretion of solid crystals. Scanning electron microscopy (SEM), electrospray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of NTO crystals in the plant exudates. Further characterization of the exudates is in progress to ascertain the purity of these crystals, and if vetiver could be used for phytomining NTO from industrial wastewater.


Sign in / Sign up

Export Citation Format

Share Document