scholarly journals Evidence for Phytoremediation and Phytoexcretion of NTO from Industrial Wastewater by Vetiver Grass

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 74
Author(s):  
Abhishek RoyChowdhury ◽  
Pallabi Mukherjee ◽  
Saumik Panja ◽  
Rupali Datta ◽  
Christos Christodoulatos ◽  
...  

The use of insensitive munitions such as 3-nitro-1,2,4-triazol-5-one (NTO) is rapidly increasing and is expected to replace conventional munitions in the near future. Various NTO treatment technologies are being developed for the treatment of wastewater from industrial munition facilities. This is the first study to explore the potential phytoremediation of industrial NTO-wastewater using vetiver grass (Chrysopogon zizanioides L.). Here, we present evidence that vetiver can effectively remove NTO from wastewater, and also translocated NTO from root to shoot. NTO was phytotoxic and resulted in a loss of plant biomass and chlorophyll. The metabolomic analysis showed significant differences between treated and control samples, with the upregulation of specific pathways such as glycerophosphate metabolism and amino acid metabolism, providing a glimpse into the stress alleviation strategy of vetiver. One of the mechanisms of NTO stress reduction was the excretion of solid crystals. Scanning electron microscopy (SEM), electrospray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of NTO crystals in the plant exudates. Further characterization of the exudates is in progress to ascertain the purity of these crystals, and if vetiver could be used for phytomining NTO from industrial wastewater.

Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 116
Author(s):  
Yi-Ping Lin ◽  
Ramdhane Dhib ◽  
Mehrab Mehrvar

Polyvinyl alcohol (PVA) is an emerging pollutant commonly found in industrial wastewater, owing to its extensive usage as an additive in the manufacturing industry. PVA’s popularity has made wastewater treatment technologies for PVA degradation a popular research topic in industrial wastewater treatment. Although many PVA degradation technologies are studied in bench-scale processes, recent advancements in process optimization and control of wastewater treatment technologies such as advanced oxidation processes (AOPs) show the feasibility of these processes by monitoring and controlling processes to meet desired regulatory standards. These wastewater treatment technologies exhibit complex reaction mechanisms leading to nonlinear and nonstationary behavior related to variability in operational conditions. Thus, black-box dynamic modeling is a promising tool for designing control schemes since dynamic modeling is more complicated in terms of first principles and reaction mechanisms. This study seeks to provide a survey of process control methods via a comprehensive review focusing on PVA degradation methods, including biological and advanced oxidation processes, along with their reaction mechanisms, control-oriented dynamic modeling (i.e., state-space, transfer function, and artificial neural network modeling), and control strategies (i.e., proportional-integral-derivative control and predictive control) associated with wastewater treatment technologies utilized for PVA degradation.


Author(s):  
Paolo Visconti ◽  
Daniele Romanello ◽  
Giovanni Zizzari ◽  
Vito Ventura ◽  
Giorgio Cavalera

This work presents an electronic board for driving and control of High Intensity Discharge (HID) lamps and Light Emitting Diode (LED) lamps. The proposed electronic board is able to drive HID or LED lamps by means of a reconfigurable output. This feature allows using the ballast in lighting systems that currently use traditional discharge lamps, as well as keeping the same ballast when discharge lamps are replaced by LED modules in the near future, when LED street lighting systems will be more affordable. Additionally, since the lighting system is designed to be used in rural areas where there is no public electricity, each lighting point incorporates a system to convert solar energy into continuous voltage by means of photovoltaic panels. In this work, energy saving issues are taken into account.


Author(s):  
Paolo Visconti ◽  
Daniele Romanello ◽  
Giovanni Zizzari ◽  
Vito Ventura ◽  
Giorgio Cavalera

This work presents an electronic board for driving and control of High Intensity Discharge (HID) lamps and Light Emitting Diode (LED) lamps. The proposed electronic board is able to drive HID or LED lamps by means of a reconfigurable output. This feature allows using the ballast in lighting systems that currently use traditional discharge lamps, as well as keeping the same ballast when discharge lamps are replaced by LED modules in the near future, when LED street lighting systems will be more affordable. Additionally, since the lighting system is designed to be used in rural areas where there is no public electricity, each lighting point incorporates a system to convert solar energy into continuous voltage by means of photovoltaic panels. In this work, energy saving issues are taken into account.


1994 ◽  
Vol 30 (2) ◽  
pp. 229-232
Author(s):  
Eloy Bécares ◽  
Antonio J. García-Olivares

Fast Fourier transform analysis has been applied to decompose the variance of some temporal series from an A + B industrial wastewater treatment system, as well as to discriminate which frequencies are basically contributing to parameter variability. The basic oscillations of the effluents, evaluated by means of the total COD, are shown to be mainly dependent on the internal dynamics of the reactors, whose design and control features are the generating forces for the final effluent fluctuations. Owing to the shorter retention time in the first reactor, the output signal was more complex than the input one. Although the second reactor reduces system complexity, it does not have an important effect on the final total COD.


1992 ◽  
Vol 25 (3) ◽  
pp. 13-21
Author(s):  
R. L. Williamson

The American approach to environmental regulation is characterized by fragmentation of responsibilities, primary reliance on command and control regulations, extraordinary complexity, a preference for identifiable standards, and heavy resort to litigation. This system has provided important benefits, including significant reduction of environmental contamination, substantial use of science in decision-making, broad participatory rights, and the stimulation of new treatment technologies. However, these gains have been achieved at excessive cost. Too much reliance is placed on command and control methods and especially on technology-based standards. There is too much resort to litigation, and inadequate input from science. Participatory rights are being undermined, and there is a poor allocation of decision-making among the federal agencies and the states. Over-regulation sometimes leads to under-regulation, and insufficient attention is given to the impact on small entities. The responsibility for these difficulties rests with everyone, including the federal agencies, the Congress, the general public and the courts. Changes in the regulatory system are needed. We should abandon the use of technology-based standards to control toxic substances under the Clean Water Act in favor of strong health- and environmentally based standards, coupled with taxes on toxic substances in wastewater.


Author(s):  
Elizabeth S. Radcliffe

The Introduction offers, first, a brief historical background to Hume’s theory of the passions, which is further elaborated in the APPENDIX. Foremost among the theses of the early modern rationalists—like Reynolds, Senault, Descartes, Cudworth, and Clarke—to which Hume is responding are: that many passions left unregulated lead to the pursuit of unsuitable objects, that reason can overcome the pernicious influence of the passions and control our actions, and that the passions are states that represent good and evil. Second, the Introduction presents a sketch of Hume’s characterization of reason and passion and his account of their relationship. Third, it explains the method of interpretation used in this book and previews its chapters. The approach is coherentist: to present an intelligible and consistent picture of Hume’s theory of passion and action, accounting for as many of the relevant texts as possible.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Adele Brunetti ◽  
Francesca Macedonio ◽  
Giuseppe Barbieri ◽  
Enrico Drioli

Abstract The recent roadmap of SPIRE initiative includes the development of “new separation, extraction and pre-treatment technologies” as one of the “key actions” for boosting sustainability, enhancing the availability and quality of existing resources. Membrane condenser is an innovative technology that was recently investigated for the recovery of water vapor for waste gaseous streams, such as flue gas, biogas, cooling tower plumes, etc. Recently, it has been also proposed as pre-treatment unit for the reduction and control of contaminants in waste gaseous streams (SOx and NOx, VOCs, H2S, NH3, siloxanes, halides, particulates, organic pollutants). This perspective article reports recent progresses in the applications of the membrane condenser in the treatment of various gaseous streams for water recovery and contaminant control. After an overview of the operating principle, the membranes used, and the main results achieved, the work also proposes the role of this technology as pre-treatment stage to other separation technologies. The potentialities of the technology are also discussed aspiring to pave the way towards the development of an innovative technology where membrane condenser can cover a key role in redesigning the whole upgrading process.


Robotica ◽  
2020 ◽  
pp. 1-18
Author(s):  
M. Garcia ◽  
P. Castillo ◽  
E. Campos ◽  
R. Lozano

SUMMARY A novel underwater vehicle configuration with an operating principle as the Sepiida animal is presented and developed in this paper. The mathematical equations describing the movements of the vehicle are obtained using the Newton–Euler approach. An analysis of the dynamic model is done for control purposes. A prototype and its embedded system are developed for validating analytically and experimentally the proposed mathematical representation. A real-time characterization of one mass is done to relate the pitch angle with the radio of displacement of the mass. In addition, first validation of the closed-loop system is done using a linear controller.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2495
Author(s):  
Kazuhiko Matsuo ◽  
Osamu Yoshie ◽  
Kosuke Kitahata ◽  
Momo Kamei ◽  
Yuta Hara ◽  
...  

Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.


Sign in / Sign up

Export Citation Format

Share Document