alqueva reservoir
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 1)

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 535
Author(s):  
Carolina Purificação ◽  
Miguel Potes ◽  
Gonçalo Rodrigues ◽  
Rui Salgado ◽  
Maria João Costa

The Alqueva reservoir, in the Southeast of Portugal, has significantly changed the landscape of the region, with impacts also on the local climate, as documented in this manuscript, namely the thermal circulation in the form of lake and land breezes. Taking advantage of three strategic meteorological stations, two installed at the shores and another on a floating platform located near the center of the reservoir, a detailed analysis of lake and land breeze occurrences during two years is presented in this study. The thermal gradient between the reservoir and the surroundings is the main driver for the breeze development and the meteorological stations placed in opposite sides of the reservoir allow to establish the criteria in order to detect lake and land breezes. The results showed more land breeze than lake breeze occurrences, in line with the more negative thermal gradient between shores and reservoir in the annual cycle. Lake breezes are more frequent in summer months during daytime and land breezes in turn are more frequent in winter months during night-time.


2020 ◽  
Vol 24 (12) ◽  
pp. 5973-5984
Author(s):  
Carlos Miranda Rodrigues ◽  
Madalena Moreira ◽  
Rita Cabral Guimarães ◽  
Miguel Potes

Abstract. Alqueva Reservoir is one of the largest artificial lakes in Europe and is a strategic water storage for public supply, irrigation, and energy generation. The reservoir is integrated within the Multipurpose Alqueva Project (MAP), which includes almost 70 reservoirs in a water-scarce region of Portugal. The MAP contributes to sustainability in southern Portugal and has an important impact on the entire country. Evaporation is the key component of water loss from the reservoirs included in the MAP. Evaporation from Alqueva Reservoir has been estimated by indirect methods or pan evaporation measurements; however, specific experimental parameters such as the pan coefficient were never evaluated. Eddy covariance measurements were performed at Alqueva Reservoir from June to September in 2014 as this time of the year provides the most representative evaporation volume losses in a Mediterranean climate. This period is also the most important period for irrigated agriculture and is, therefore, the most problematic period of the year in terms of managing the reservoir. The direct pan evaporation approach was first tested, and the results were compared to the eddy covariance evaporation measurements. The total eddy covariance (EC) evaporation measured from June to September 2014 was 450.1 mm. The mean daily EC evaporation in June, July, August, and September was 3.7, 4.0, 4.5, and 2.5 mm d−1, respectively. A pan coefficient, Kpan, multivariable function was established on a daily scale using the identified governing factors: air temperature, relative humidity, wind speed, and incoming solar radiation. The correlation between the modelled evaporation and the measured EC evaporation had an R2 value of 0.7. The estimated Kpan values were 0.59, 0.57, 0.57, and 0.64 in June, July, August, and September, respectively. Consequently, the daily mean reservoir evaporation (ERes) was 3.9, 4.2, 4.5, and 2.7 mm d−1 for this 4-month period and the total modelled ERes was 455.8 mm. The developed Kpan function was validated for the same period in 2017 and yielded an R2 value of 0.68. This study proposes an applicable method for calculating evaporation based on pan measurements in Alqueva Reservoir, and it can be used to support regional water management. Moreover, the methodology presented here could be applied to other reservoirs, and the developed equation could act as a first evaluation for the management of other Mediterranean reservoirs.


2020 ◽  
Vol 13 (8) ◽  
pp. 3475-3488 ◽  
Author(s):  
Maksim Iakunin ◽  
Victor Stepanenko ◽  
Rui Salgado ◽  
Miguel Potes ◽  
Alexandra Penha ◽  
...  

Abstract. The Alqueva reservoir (southeast of Portugal) is the largest artificial lake in western Europe and a strategic freshwater supply in the region. The reservoir is of scientific interest in terms of monitoring and maintaining the quality and quantity of water and its impact on the regional climate. To support these tasks, we conducted numerical studies of the thermal and gas regimes in the lake over the period from May 2017 to March 2019, supplemented by the data observed at the weather stations and floating platforms during the field campaign of the ALentejo Observation and Prediction (ALOP) system project. The 1D model, LAKE 2.0, was used for the numerical studies. Since it is highly versatile and can be adjusted to the specific features of the reservoir, this model is capable of simulating its thermodynamic and biogeochemical characteristics. Profiles and time series of water temperature, sensible and latent heat fluxes, and concentrations of CO2 and O2 reproduced by the LAKE 2.0 model were validated against the observed data and were compared to the thermodynamic simulation results obtained with the freshwater lake (FLake) model. The results demonstrated that both models captured the seasonal variations in water surface temperature and the internal thermal structure of the Alqueva reservoir well. The LAKE 2.0 model showed slightly better results and satisfactorily captured the seasonal gas regime.


2020 ◽  
Author(s):  
Carlos Miranda Rodrigues ◽  
Madalena Moreira ◽  
Rita Cabral Guimarães

Abstract. Alqueva Reservoir is one of the largest artificial lakes in Europe and is a strategic water storage for public supply, irrigation, and energy generation. The reservoir is integrated within the Multipurpose Alqueva Project (MAP), which includes almost 70 reservoirs in a water-scarce region of Portugal. The MAP contributes to sustainability in southern Portugal and has an important impact for the entire country. Evaporation is the key component of water losses from the reservoirs included in the MAP. To date, evaporation from Alqueva Reservoir has been estimated by indirect methods or pan evaporation measurements. Eddy covariance measurements were performed at Alqueva Reservoir from July to September in 2014 as this time of the year provides the most representative evaporation volume losses in a Mediterranean climate. This period is also the most important for irrigated agriculture, and is therefore the most problematic part of the year in terms of managing the reservoir. The direct pan evaporation approach was first tested and compared to eddy covariance evaporation measurements. A relationship was then established based on a pan coefficient (Kpan) multivariable function by using the identified governing factors: air temperature, relative humidity, wind speed, and incoming solar radiation. The mean Kpan for the period from June to September 2014 was 0.59, and the modelled mean daily reservoir evaporation in June, July, August, and September was 3.9 mm d−1, 4.2 mm d−1, 4.5 mm d−1, and 2.7 mm d−1, respectively. The total estimated reservoir evaporation for this 4-month period was 455.8 mm. The correlation between the estimated evaporation and the measured EC evaporation had an R2 value of 0.7. The developed Kpan function was validated for the same period in 2017, and yielded an R2 value of 0.68. This study provides an applicable method for calculating evaporation based on pan measurements in Alqueva Reservoir, which can support regional water management. Moreover, the methodology presented here could be applied to other reservoirs, and the developed equation for Alqueva Reservoir could act as a first evaluation for the management of other Mediterranean reservoirs.


2020 ◽  
Vol 12 (5) ◽  
pp. 768 ◽  
Author(s):  
Gonçalo Rodrigues ◽  
Miguel Potes ◽  
Maria João Costa ◽  
Maria Helena Novais ◽  
Alexandra Marchã Penha ◽  
...  

The Alqueva reservoir (South of Portugal) in the Guadiana river basin constitutes the most important water resource in southern Portugal for domestic and agricultural consumption. We present a methodology developed to characterize spatial and temporal variations of Secchi depth and diffuse attenuation coefficient (both related to dissolved/suspended particles and to water transparency), using high spatial resolution satellite images from Sentinel-2 Multi-Spectral Instrument (MSI). Empirical relations between satellite retrievals of surface reflectances and in situ measurements of water parameters were defined and applied to the entire reservoir for spatial and temporal analysis in the period July 2017–June 2019, useful in the identification of microalgae blooms and rapid variations in water characteristics, which allowed us to differentiate five zones. Water estimates with lower transparency and higher attenuation of radiation were found in the northern area of Alqueva reservoir during the months characterized by higher water temperatures, with Secchi depth monthly averages near 1.0 m and diffuse attenuation coefficient near or above 1.5 m-1. Satellite retrievals of water with greater transparency in the reservoir were obtained in the southern area in months with low water temperature and atmospheric stability, presenting some monthly Secchi depth averages above 3 m, and diffuse attenuation coefficient below 0.8 m-1. January 2018 presented great transparency of water with a Secchi depth of 7.5 m for pixels representing the 95th percentile and diffuse attenuation coefficient of 0.36 m for pixels representing the 5th percentile in the Southern region.


2020 ◽  
Author(s):  
Maksim Iakunin ◽  
Victor Stepanenko ◽  
Rui Salgado ◽  
Miguel Potes ◽  
Alexandra Penha ◽  
...  

Abstract. The Alqueva reservoir (southeast of Portugal) being the largest artificial lake in Western Europe and strategic freshwater supply in the region is of scientific interest in terms of monitoring and maintaining the quality and quantity of water and its impact on the regional climate. To solve these tasks we conducted numerical studies of the thermal and gas regimes in the lake over the period from May 2017 to March 2019, supplemented by the data observed at the weather stations and the floating platforms during the field campaign of the ALOP (ALentejo Observation and Prediction System) project. One-dimensional model LAKE2.0 was used for the numerical studies. Being highly versatile and adjusted to the specific features of the reservoir, this parameterization is capable to simulate its thermodynamic and biogeochemical characteristics. Profiles and time series of water temperature, sensible and latent heat fluxes, concentrations of CO2 and O2 reproduced by the LAKE2.0 model were validated against the observed data and were compared with the thermodynamic simulation results obtained with the FLake model. The results demonstrated that LAKE2.0 model has good ability in capturing the seasonal variations in the water surface temperature and the internal thermal structure of the Alqueva reservoir, and satisfactorily captured the seasonal gas regime.


Author(s):  
Miguel Potes ◽  
Gonçalo Rodrigues ◽  
Alexandra Marchã Penha ◽  
Maria Helena Novais ◽  
Maria João Costa ◽  
...  

Abstract. Alqueva reservoir located in southeast of Portugal has a surface area of 250 km2 and total capacity of 4150 hm3. Since 2006 the water quality of this reservoir is explored by the authors using remote sensing techniques. First using MERIS multi-spectral radiometer on-board of ENVISAT-1 and presently with MSI multi-spectral radiometer on-board SENTINEL-2. The existence of two satellites (A and B) equipped with MSI enable the area to be revisited, under the same viewing conditions, every 2–3 days. Since 2017 the multidisciplinary project ALOP (ALentejo Observation and Prediction systems) expands the team knowledge about the physical and bio-chemical properties of the reservoir. This project includes an integrated field campaign at different experimental sites in the reservoir and its shores, at least until September 2018. Previous algorithms developed by the team for MERIS are tested with the new MSI instrument for water turbidity, chlorophyll a concentration and density of cyanobacteria. Results from micro-algae bloom occurred in late summer/early autumn 2017 on the reservoir are presented, showing the capabilities of MSI sensor for detection and high resolution mapping over the reservoir. The results are compared with in situ sampling and laboratorial analysis of chlorophyll a associated with the bloom.


2018 ◽  
Vol 22 (10) ◽  
pp. 5191-5210 ◽  
Author(s):  
Maksim Iakunin ◽  
Rui Salgado ◽  
Miguel Potes

Abstract. Natural lakes and big artificial reservoirs can affect the weather regime of surrounding areas but, usually, consideration of all aspects of this impact and their quantification is a difficult task. The Alqueva reservoir, the largest artificial lake in western Europe, located on the south-east of Portugal, was filled in 2004. It is a large natural laboratory that allows the study of changes in surface and in landscape and how they affect the weather in the region. This paper is focused on a 3-day case study, 22–24 July 2014, during which an intensive observation campaign was carried out. In order to quantify the breeze effects induced by the Alqueva reservoir, two simulations with the mesoscale atmospheric model Meso-NH coupled to the FLake freshwater lake model has been performed. The difference between the two simulations lies in the presence or absence of the reservoir on the model surface. Comparing the two simulation datasets, with and without the reservoir, net results of the lake impact were obtained. Magnitude of the impact on air temperature, relative humidity, and other atmospheric variables are shown. The clear effect of a lake breeze (5–7 m s−1) can be observed during daytime on distances up to 6 km away from the shores and up to 300 m above the surface. The lake breeze system starts to form at 09:00 UTC and dissipates at 18:00–19:00 UTC with the arrival of a larger-scale Atlantic breeze. The descending branch of the lake breeze circulation brings dry air from higher atmospheric layers (2–2.5 km) and redistributes it over the lake. It is also shown that despite its significant intensity the effect is limited to a couple of kilometres away from the lake borders.


Sign in / Sign up

Export Citation Format

Share Document