mirna evolution
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 7)

H-INDEX

2
(FIVE YEARS 0)

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2298
Author(s):  
Manosh Kumar Biswas ◽  
Dhima Biswas ◽  
Mita Bagchi ◽  
Ganjun Yi ◽  
Guiming Deng

Microsatellites, or simple sequences repeat (SSRs), are distributed in genes, intergenic regions and transposable elements in the genome. SSRs were identified for developing markers from draft genome assemblies, transcriptome sequences and genome survey sequences in plant and animals. The identification, distribution, and density of microsatellites in pre-microRNAs (miRNAs) are not well documented in plants. In this study, SSRs were identified in 16,892 pre-miRNA sequences from 292 plant species in six taxonomic groups (algae to dicots). Fifty-one percent of pre-miRNA sequences contained SSRs. Mononucleotide repeats were the most abundant, followed by di- and trinucleotide repeats. Tetra-, penta-, and hexarepeats were rare. A total of 9,498 (57.46%) microsatellite loci had potential as pre-miRNA SSR markers. Of the markers, 3,573 (37.62%) were non-redundant, and 2,341 (65.51%) primer pairs could be transferred to at least one of the plant taxonomic groups. All data and primer pairs were deposited in a user-friendly, freely accessible plant miRNA SSR marker database. The data presented in this study, accelerate the understanding of pre-miRNA evolution and serve as valuable genomic treasure for genetic improvements in a wide range of crops, including legumes, cereals, and cruciferous crops.


2021 ◽  
Author(s):  
Zhonglong Guo ◽  
Zheng Kuang ◽  
Yongxin Zhao ◽  
Yang Deng ◽  
Hao He ◽  
...  

Abstract Nearly 200 plant genomes have been sequenced over the last two years, and new functions of plant microRNAs (miRNAs) have been revealed. Therefore, timely update of the plant miRNA databases by incorporating miRNAs from the newly sequenced species and functional information is required to provide useful resources for advancing plant miRNA research. Here we report the update of PmiREN2.0 (https://pmiren.com/) with an addition of 19 363 miRNA entries from 91 plants, doubling the amount of data in the original version. Meanwhile, abundant regulatory information centred on miRNAs was added, including predicted upstream transcription factors through binding motifs scanning and elaborate annotation of miRNA targets. As an example, a genome-wide regulatory network centred on miRNAs was constructed for Arabidopsis. Furthermore, phylogenetic trees of conserved miRNA families were built to expand the understanding of miRNA evolution across the plant lineages. These data are helpful to deduce the regulatory relationships concerning miRNA functions in diverse plants. Beside the new data, a suite of design tools was incorporated to facilitate experimental practice. Finally, a forum named ‘PmiREN Community’ was added for discussion and resource and new discovery sharing. With these upgrades, PmiREN2.0 should serve the community better and accelerate miRNA research in plants.


Author(s):  
Thomas Desvignes ◽  
Jason Sydes ◽  
Jerôme Montfort ◽  
Julien Bobe ◽  
John H Postlethwait

Abstract microRNAs (miRNAs) are important gene expression regulators implicated in many biological processes, but we lack a global understanding of how miRNA genes evolve and contribute to developmental canalization and phenotypic diversification. Whole genome duplication events likely provide a substrate for species divergence and phenotypic change by increasing gene numbers and relaxing evolutionary pressures. To understand the consequences of genome duplication on miRNA evolution, we studied miRNA genes following the Teleost Genome Duplication (TGD). Analysis of miRNA genes in four teleosts and in spotted gar, whose lineage diverged before the TGD, revealed that miRNA genes were retained in ohnologous pairs more frequently than protein-coding genes, and that gene losses occurred rapidly after the TGD. Genomic context influenced retention rates, with clustered miRNA genes retained more often than non-clustered miRNA genes and intergenic miRNA genes retained more frequently than intragenic miRNA genes, which often shared the evolutionary fate of their protein-coding host. Expression analyses revealed both conserved and divergent expression patterns across species in line with miRNA functions in phenotypic canalization and diversification, respectively. Finally, major strands of miRNA genes experienced stronger purifying selection, especially in their seeds and 3’ complementary regions, compared to minor strands, which nonetheless also displayed evolutionary features compatible with constrained function. This study provides the first genome-wide, multi-species analysis of the mechanisms influencing metazoan miRNA evolution after whole genome duplication.


2020 ◽  
Vol 7 (7) ◽  
pp. 200517
Author(s):  
Karen M. Kapheim ◽  
Beryl M. Jones ◽  
Eirik Søvik ◽  
Eckart Stolle ◽  
Robert M. Waterhouse ◽  
...  

Evolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality. However, deep sequencing of small RNAs in six bee species revealed a substantial proportion (20–35%) of detected miRNAs had lineage-specific expression in the brain, 24–72% of which did not have homologues in other species. Lineage-specific miRNAs disproportionately target lineage-specific genes, and have lower expression levels than shared miRNAs. The predicted targets of lineage-specific miRNAs are not enriched for genes with caste-biased expression or genes under positive selection in social species. Together, these results suggest that novel miRNAs may coevolve with novel genes, and thus contribute to lineage-specific patterns of evolution in bees, but do not appear to have significant influence on social evolution. Our analyses also support the hypothesis that many new miRNAs are purged by selection due to deleterious effects on mRNA targets, and suggest genome structure is not as influential in regulating bee miRNA evolution as has been shown for mammalian miRNAs.


2019 ◽  
Author(s):  
Karen M. Kapheim ◽  
Beryl M. Jones ◽  
Eirik Søvik ◽  
Eckart Stolle ◽  
Robert M. Waterhouse ◽  
...  

ABSTRACTEvolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality. However, deep sequencing of small RNAs in six bee species revealed a substantial proportion (20-35%) of detected miRNAs had lineage-specific expression in the brain, 24-72% of which did not have homologs in other species. Lineage-specific miRNAs disproportionately target lineage-specific genes, and have lower expression levels than shared miRNAs. The predicted targets of lineage-specific miRNAs are not enriched for genes with caste-biased expression or genes under positive selection in social species. Together, these results suggest that novel miRNAs may coevolve with novel genes, and thus contribute to lineage-specific patterns of evolution in bees, but do not appear to have significant influence on social evolution. Our analyses also support the hypothesis that many new miRNAs are purged by selection due to deleterious effects on mRNA targets, and suggest genome structure is not as influential in regulating bee miRNA evolution as has been shown for mammalian miRNAs.


2019 ◽  
Vol 35 (22) ◽  
pp. 4553-4559
Author(s):  
Ali M Yazbeck ◽  
Peter F Stadler ◽  
Kifah Tout ◽  
Jörg Fallmann

Abstract Motivation MicroRNAs form an important class of RNA regulators that has been studied extensively. The miRBase and Rfam database provide rich, frequently updated information on both pre-miRNAs and their mature forms. These data sources, however, rely on individual data submission and thus are neither complete nor consistent in their coverage across different miRNA families. Quantitative studies of miRNA evolution therefore are difficult or impossible on this basis. Results We present here a workflow and a corresponding implementation, MIRfix, that automatically curates miRNA datasets by improving alignments of their precursors, the consistency of the annotation of mature miR and miR* sequence, and the phylogenetic coverage. MIRfix produces alignments that are comparable across families and sets the stage for improved homology search as well as quantitative analyses. Availability and implementation MIRfix can be downloaded from https://github.com/Bierinformatik/MIRfix. Supplementary information Supplementary data are available at Bioinformatics online.


MicroRNA ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Yu Zhang ◽  
Ze Yun ◽  
Liang Gong ◽  
Hongxia Qu ◽  
Xuewu Duan ◽  
...  
Keyword(s):  

2009 ◽  
Vol 83 (13) ◽  
pp. 6969-6973 ◽  
Author(s):  
Yongxiu Yao ◽  
Yuguang Zhao ◽  
Lorraine P. Smith ◽  
Michael Watson ◽  
Venugopal Nair

ABSTRACT Herpesviruses account for 134 out of the 140 virus-encoded microRNAs (miRNAs) known today. Here we report the identification of 11 novel miRNAs encoded by herpesvirus of turkey (HVT), a virus used as a live vaccine in poultry against the highly oncogenic Marek's disease virus type 1. Ten of these miRNAs were clustered together within the repeat long region of the viral genome, demonstrating some degree of positional conservation with other mardiviruses. Close sequence and phylogenetic relationships of some miRNAs in this cluster indicate evolution by duplication. HVT miRNAs represent the first example of virus-encoded miRNAs that show evolution by duplication.


Sign in / Sign up

Export Citation Format

Share Document