scholarly journals Detection and localization of calcium oxalate in kidney using synchrotron deep ultraviolet fluorescence microscopy

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Emmanuel Estève ◽  
David Buob ◽  
Frédéric Jamme ◽  
Chantal Jouanneau ◽  
Slavka Kascakova ◽  
...  

Renal oxalosis is a rare cause of renal failure whose diagnosis can be challenging. Synchrotron deep ultraviolet (UV) fluorescence was assayed to improve oxalosis detection on kidney biopsies spatial resolution and sensitivity compared with the Fourier transform infrared microspectroscopy gold standard. The fluorescence spectrum of synthetic mono-, di- and tri-hydrated calcium oxalate was investigated using a microspectrometer coupled to the synchrotron UV beamline DISCO, Synchrotron SOLEIL, France. The obtained spectra were used to detect oxalocalcic crystals in a case control study of 42 human kidney biopsies including 19 renal oxalosis due to primary (PHO, n = 11) and secondary hyperoxaluria (SHO, n = 8), seven samples from PHO patients who received combined kidney and liver transplants, and 16 controls. For all oxalocalcic hydrates samples, a fluorescence signal is detected at 420 nm. These spectra were used to identify standard oxalocalcic crystals in patients with PHO or SHO. They also revealed micrometric crystallites as well as non-aggregated oxalate accumulation in tubular cells. A nine-points histological score was established for the diagnosis of renal oxalosis with 100% specificity (76–100) and a 73% sensitivity (43–90). Oxalate tubular accumulation and higher histological score were correlated to lower estimated glomerular filtration rate and higher urinary oxalate over creatinine ratio.

2020 ◽  
Vol 13 (12) ◽  
Author(s):  
Iris H. Valido ◽  
Montserrat Resina‐Gallego ◽  
Ibraheem Yousef ◽  
Maria Pilar Luque‐Gálvez ◽  
Manuel Valiente ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 943
Author(s):  
Diletta Ami ◽  
Barbara Sciandrone ◽  
Paolo Mereghetti ◽  
Jacopo Falvo ◽  
Tiziano Catelani ◽  
...  

Amyloid aggregation of human ataxin-3 (ATX3) is responsible for spinocerebellar ataxia type 3, which belongs to the class of polyglutamine neurodegenerative disorders. It is widely accepted that the formation of toxic oligomeric species is primarily involved in the onset of the disease. For this reason, to understand the mechanisms underlying toxicity, we expressed both a physiological (ATX3-Q24) and a pathological ATX3 variant (ATX3-Q55) in a simplified cellular model, Escherichia coli. It has been observed that ATX3-Q55 expression induces a higher reduction of the cell growth compared to ATX3-Q24, due to the bacteriostatic effect of the toxic oligomeric species. Furthermore, the Fourier transform infrared microspectroscopy investigation, supported by multivariate analysis, made it possible to monitor protein aggregation and the induced cell perturbations in intact cells. In particular, it has been found that the toxic oligomeric species associated with the expression of ATX3-Q55 are responsible for the main spectral changes, ascribable mainly to the cell envelope modifications. A structural alteration of the membrane detected through electron microscopy analysis in the strain expressing the pathological form supports the spectroscopic results.


Kidney360 ◽  
2020 ◽  
pp. 10.34067/KID.0006942020
Author(s):  
Jessica J. Saw ◽  
Mayandi Sivaguru ◽  
Elena M. Wilson ◽  
Yiran Dong ◽  
Robert A. Sanford ◽  
...  

Background: Human kidney stones form via repeated events of mineral precipitation, partial dissolution and reprecipitation, which are directly analogous to similar processes in other natural and man-made environments where resident microbiomes strongly influence biomineralization. High-resolution microscopy and high-fidelity metagenomic (microscopy-to-omics) analyses, applicable to all forms of biomineralization, have been applied to assemble definitive evidence of in vivo microbiome entombment during urolithiasis. Methods: Stone fragments were collected from a randomly chosen cohort of 20 patients using standard percutaneous nephrolithotomy (PCNL). Fourier transform infrared (FTIR) spectroscopy indicated that 18 of these patients were calcium oxalate (CaOx) stone formers, while one patient each formed brushite and struvite stones. This apportionment is consistent with global stone mineralogy distributions. Stone fragments from 7 of these 20 patients (5 CaOx, 1 brushite and 1 struvite) were thin sectioned and analyzed using brightfield (BF), polarization (POL), confocal, superresolution autofluorescence (SRAF) and Raman techniques. DNA from remaining fragments, grouped according to each of the 20 patients, were analyzed with amplicon sequencing of 16S rRNA gene sequences (V1-V3, V3-V5) and internal transcribed spacer (ITS1, ITS2) regions. Results: Bulk entombed DNA was sequenced from stone fragments in 11 of the 18 CaOx patients, as well as the brushite and struvite patients. These analyses confirmed the presence of an entombed low-diversity community of bacteria and fungi, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Aspergillus niger. Bacterial cells ~1  µm in diameter were also optically observed to be entombed and well-preserved in amorphous hydroxyapatite spherules and fans of needle-like crystals of brushite and struvite. Conclusions: These results indicate a microbiome is entombed during in vivo CaOx stone formation. Similar processes are implied for brushite and struvite stones. This evidence lays the groundwork for future in vitro and in vivo experimentation to determine how the microbiome may actively and/or passively influence kidney stone biomineralization.


2001 ◽  
Vol 101 (2) ◽  
pp. 159-168 ◽  
Author(s):  
David E. FLEMING ◽  
Wilhelm VAN BRONSWIJK ◽  
Rosemary Lyons RYALL

To assess the binding of individual amino acids to the principal calcium minerals found in human kidney stones, the adsorption of 20 amino acids on to calcium oxalate monohydrate, CaHPO4.2H2O, Ca3(PO4)2 and Ca5(PO4)3OH crystals was determined over the physiological urinary pH range (pH 5–8) in aqueous solutions. All amino acids adsorbed most strongly at pH 5, and this decreased in all cases as the pH was increased. The amino acids which adsorbed most strongly were aspartic acid, glutamic acid and γ-carboxyglutamic acid, with the last displaying the strongest affinity. All amino acids bound more avidly to calcium oxalate monohydrate than to any of the phosphate minerals. Adsorption on to CaHPO4.2H2O was generally higher than for Ca3(PO4)2 and Ca5(PO4)3OH, for which all amino acids, with the exception of γ-carboxyglutamic acid, had only a weak affinity. The binding affinity of these acids is thought to be due to their zwitterions being able to adopt conformations in which two carboxyl groups, and possibly the amino group, can interact with the mineral surface without further rotation. The strong binding affinity of di-and tri-carboxylic acids for calcium stone minerals indicates that proteins rich in these amino acids are more likely to play a functional role in stone pathogenesis than those possessing only a few such residues. These findings, as well as the preferential adsorption of the amino acids for calcium oxalate monohydrate rather than calcium phosphate minerals, have ramifications for research aimed at discovering the true role of proteins in stone formation and for potential application in the design of synthetic peptides for use in stone therapy.


Sign in / Sign up

Export Citation Format

Share Document