scholarly journals Strata Movement of the Thick Loose Layer under Strip-Filling Mining Method: A Case Study

2021 ◽  
Vol 11 (24) ◽  
pp. 11717
Author(s):  
Qingliang Chang ◽  
Xingjie Yao ◽  
Qiang Leng ◽  
Hao Cheng ◽  
Fengfeng Wu ◽  
...  

Filling mining plays an important role in controlling surface subsidence. To study the movement of overburdened rock in filling mining under thick loose layers, a numerical simulation combing field measurement in CT30101 working face in the Mahuangliang coal mine was tested. The results show that different filling rates and filling body strength have different influences on roof and surface movement. The filling rate has a greater impact, which is the main control factor. The filling stress and roof tensile stress decrease gradually with roadway filling. The filling body stress and roof tensile stress in the first and second rounds are far greater than in the fourth round. After the completion of filling, the first and second round of filling bodies mainly bear the overburden, and the total deformation of the surrounding rock of the main transport roadway is very small, and therefore the displacement of the overburdened rock is controllable. The field monitoring results also show that the overburdened rock became stable after several fillings rounds. Combing the numerical modeling and field tests results, this study can be a guideline for similar geological conditions especially for coal mining under thick loose layers and thin bedrock.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shi Jiulin ◽  
Zhang Quntao ◽  
Gao Xiaojin ◽  
Xue Jisheng

Adopting an effective top coal caving method is the key to enhancing coal recovery and reducing gangue content for the fully mechanized top coal caving working face with extra-thick coal seams. In this study, the movement of coal particles generated during top coal caving is considered to follow a normal distribution. Then, the caving body and coal-rock settlement along the working face during the caving process are studied based on both the random media theory and probability theory. Accordingly, the optimal caving interval and caving sequences are determined, and a novel interval symmetrical coal caving method is proposed. The proposed method is systematically verified with results from physical similarity tests, and different caving methods are assessed by field tests. The results show the following: (1) The coal-rock settlement and the caving body demonstrate clear axial symmetrical features along the working face; the size of the caving body increases as the caving height grows and its shape turns progressively from semicircular to semielliptical with a lower foot of the coal-rock settlement. (2) The caving interval is derived using the sum of the radii of the coal-rock settlement curves formed by the two largest caving bodies. (3) The symmetrical caving approach provides a symmetrical space for the subsequent movement of the broken top coal, which enables a uniform development of the caving body. (4) Compared with the traditional sequential coal caving method with the same number of supports, the interval symmetrical caving method results in a 21.7% of coal production increase, 17% caving rate promotion, and a shortened caving time by 23.4%. (5) The interval symmetrical caving method is found to improve the controllability of the caving process at the fully mechanized top coal caving working face. In general, this work presents a theoretical approach to select the optimal caving methods for the fully mechanized caving working face in extra-thick coal seams for an improved production efficiency of the work face. The results of this study can also provide theoretical significance and referencing value for quantitative analyses of the coal caving methods for work faces with similar geological conditions.


2021 ◽  
Vol 11 (9) ◽  
pp. 4125
Author(s):  
Zhe Xiang ◽  
Nong Zhang ◽  
Zhengzheng Xie ◽  
Feng Guo ◽  
Chenghao Zhang

The higher strength of a hard roof leads to higher coal pressure during coal mining, especially under extra-thick coal seam conditions. This study addresses the hard roof control problem for extra-thick coal seams using the air return roadway 4106 (AR 4106) of the Wenjiapo Coal Mine as a case study. A new surrounding rock control strategy is proposed, which mainly includes 44 m deep-hole pre-splitting blasting for stress releasing and flexible 4-m-long bolt for roof supporting. Based on the new support scheme, field tests were performed. The results show that roadway support failure in traditional scenarios is caused by insufficient bolt length and extensive rotary subsidence of the long cantilever beam of the hard roof. In the new proposed scheme, flexible 4-m-long bolts are shown to effectively restrain the initial expansion deformation of the top coal. The deflection of the rock beam anchored by the roof foundation are improved. Deep-hole pre-splitting blasting effectively reduces the cantilever distance of the “block B” of the voussoir beam structure. The stress environment of the roadway surrounding rock is optimized and anchorage structure damage is inhibited. The results provide insights regarding the safe control of roadway roofs under extra-thick coal seam conditions.


2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.


Automatica ◽  
1990 ◽  
Vol 26 (3) ◽  
pp. 475-485 ◽  
Author(s):  
Karl Heinz Fasol ◽  
Georg Michael Pohl

2012 ◽  
Vol 518-523 ◽  
pp. 5754-5759
Author(s):  
Dong Jian Xue ◽  
Zheng Wei He ◽  
Xiang Dong Zheng

Derong County is located in Ganzi Tibetan Autonomous Prefecture in southern part of Sichuan Province, in the upper of the Jinsha River, where there is a subtropical plateau monsoon climate, abundant sunshine, and large amount of evaporation, so it is a typical dry-hot valleys region. Derong County is the area of more ups and downs in the terrain, deep valleys, steep mountains, complex geological conditions, intense tectonic activity, various climate types, and has obvious vertical zone effect by temperature, serious physical weathering of rock, and landslide, debris flow, collapse and other geohazards are easily induced under the influence of rainfall and human engineering activities. These geohazards have brought serious harm to the people's lives and property, and have a great impact on the socio-economic development. Through the analysis of geohazards in the study area to investigate its distribution and development trends, this paper provide a basis for geohazard prevention and economic development.


1997 ◽  
Vol 87 (2) ◽  
pp. 356-369
Author(s):  
Takumi Toshinawa ◽  
J. John Taber ◽  
John B. Berrill

Abstract The areal distribution of seismic ground-motion intensity in the city of Christchurch, New Zealand, during the 1994 Arthurs Pass Earthquake (ML 6.6) was evaluated using an intensity questionnaire together with local site amplifications inferred from seismic recordings and microtremors. In order to estimate the intensity in parts of the city where no intensity data were available, intensity data were compared to relative levels of shaking determined from both weak-motion and microtremor recordings. Weak ground-motion amplification factors were determined using ratios of ground accelerations at five sediment sites with respect to a rock site. Microtremor amplification factors were determined from horizontal-to-vertical spectral ratios at a 1-km spacing throughout the city. A positive correlation between weak-motion and microtremor amplification factors allowed extrapolation of microtremor amplification to estimated MM intensity (EMMI). EMMI ranged from 3 to 6 and was consistent with the questionnaire intensity and geological conditions and showed detailed information on the areal distribution of ground-motion intensity in the city.


Sign in / Sign up

Export Citation Format

Share Document