radon inhalation
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 3)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Takahiro Kataoka ◽  
Norie Kanzaki ◽  
Akihiro Sakoda ◽  
Hina Shuto ◽  
Junki Yano ◽  
...  
Keyword(s):  


2021 ◽  
Vol 11 (6) ◽  
pp. 79-88
Author(s):  
Olukunle Olaonipekun Oladapo ◽  
Olatunde Micheal Oni ◽  
Emmanuel Abiodun Oni

Background and Purpose: Radon-222 is a major human health challenge among all sources of ionizing radiation. For most people, the greatest exposure to radon comes from homes and affects mainly the respiratory tract, especially the tracheobronchial region. This work assesses the annual tracheobronchial effective dose from indoor radon inhalation in residential buildings with different covering materials for walls, ceilings and floor using different dosimetric lung models. Method: A total of 180 residential buildings with commonest combination of covering materials in some cities in South-western Nigeria were investigated using an active electronic radon gas detector, RAD 7. The commonest combination of covering materials were (A): paint, paint, carpet; (B): paint fiber board, plastic tiles; (C): paint, fiber board, ceramic tiles for walls, ceilings and floors respectively. Result: The mean indoor radon concentration measured ranged between 23.08 Bq m-3 and 72.14 Bq m-3 for all the residential buildings investigated. Buildings with covering materials C, presented the highest radon concentration. Generally, the mean indoor radon concentration for all combinations of covering materials in all the cities investigated were found to be lower than the recommended action level of 200 Bqm-3 and the reference level of 100 Bqm-3 set by International Commission on for Radiation Protection and World Health Organization respectively. The annual tracheobronchial effective dose estimated for the different lung dose models ranged from 0.91 mSv – 3.27 mSv for combination (A), 1.00 mSv - 3.60 mSv for combination (B) and 1.09 mSv – 3.94 mSv for combination (C). It revealed that the more recent model gives greater value of the annual tracheobronchial effective dose. It was observed that only the annual tracheobronchial effective doses obtained by the James model presented values that are within the recommended ICRP intervention level of (3-10) mSvy-1. Other models gave values of annual tracheobronchial effective doses below the ICRP recommended intervention levels. Conclusion: These imply that all the residential buildings and the different combination of covering materials surveyed in this work will not pose any radiological hazard to the inhabitants. Key words: Indoor Radon Inhalation, Radon-222, annual tracheobronchial effective dose, residential buildings



2021 ◽  
Vol 165 ◽  
pp. 56
Author(s):  
Takahiro Kataoka ◽  
Norie Kanzaki ◽  
Akihiro Sakoda ◽  
Hina Shuto ◽  
Junki Yano ◽  
...  


2020 ◽  
Vol 61 (4) ◽  
pp. 517-523
Author(s):  
Takahiro Kataoka ◽  
Hina Shuto ◽  
Junki Yano ◽  
Shota Naoe ◽  
Tsuyoshi Ishida ◽  
...  

Abstract The forced swim test (FST) is a screening model for antidepressant activity; it causes immobility and induces oxidative stress. We previously reported that radon inhalation has antidepressant-like effects in mice potentially through the activation of antioxidative functions upon radon inhalation. This study aimed to investigate the effect of prior and post low-dose X-irradiation (0.1, 0.5, 1.0 and 2.0 Gy) on FST-induced immobility and oxidative stress in the mouse brain, and the differences, if any, between the two. Mice received X-irradiation before or after the FST repeatedly for 5 days. In the post-FST-irradiated group, an additional FST was conducted 4 h after the last irradiation. Consequently, animals receiving prior X-irradiation (0.1 Gy) had better mobility outcomes than sham-irradiated mice; however, their levels of lipid peroxide (LPO), an oxidative stress marker, remained unchanged. However, animals that received post-FST X-irradiation (0.5 Gy) had better mobility outcomes and their LPO levels were significantly lower than those of the sham-irradiated mice. The present results indicate that 0.5 Gy X-irradiation after FST inhibits FST-induced immobility and oxidative stress in mice.



Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985316 ◽  
Author(s):  
Shuji Kojima ◽  
Jerry M. Cuttler ◽  
Kiyomi Inoguchi ◽  
Kenshou Yorozu ◽  
Takashisa Horii ◽  
...  

We report on the application of radon inhalation therapy to patients with 4 types of cancer: colon, uterine, lung, and liver cell. The radon treatments were given to improve the efficacy of chemotherapy and were potent in all 4 cases. Marker values decreased and disease symptoms were alleviated. We include a lengthy discussion on the mechanism that may be responsible for the observed results. While employing the radon generator to treat the patient with hepatocellular carcinoma, we discovered that a concentration of 6 MBq/m3 was very effective, while 1 MBq/m3 was marginal. This implies different, and rather high, radon concentration thresholds for the treatment of different types of cancer. The evidence from these 4 cases suggests that radon inhalation may be beneficial against various cancer types as an important adjuvant therapy to conventional chemotherapy and for local high-dose radiotherapy, which would address the problem of distant metastasis. A previous case report on 2 patients with advanced breast cancer, who refused chemotherapy or radiotherapy, indicates that radon may be effective as a primary therapy for cancer. Clinical trials should be carried out to determine the best radon concentrations for treatment of other types of cancer, at different stages of progression.



2018 ◽  
Vol 50 (3) ◽  
Author(s):  
Kaori Sasaoka ◽  
Takahiro Kataoka ◽  
Norie Kanzaki ◽  
Yusuke Kobashi ◽  
Akihiro Sakoda ◽  
...  


2017 ◽  
Vol 58 (6) ◽  
pp. 887-893 ◽  
Author(s):  
Takahiro Kataoka ◽  
Reo Etani ◽  
Norie Kanzaki ◽  
Yusuke Kobashi ◽  
Yuto Yunoki ◽  
...  

Abstract Although radon inhalation increases superoxide dismutase (SOD) activities in mouse organs, the mechanisms and pathways have not yet been fully clarified. The aim of this study was to determine the details of SOD activation in mouse brain tissue following the inhalation of radon at concentrations of 500 or 2000 Bq/m3 for 24 h. After inhalation, brains were removed quickly for analysis. Radon inhalation increased the manganese (Mn)-SOD level and mitochondrial SOD activity. However, the differences were not significant. There were no changes in the Cu/Zn-SOD level or cytosolic SOD activity. Radon inhalation increased the brain nuclear factor (NF)-κB content, which regulates the induction of Mn-SOD, in the nuclear and cytosolic compartments. The level of inhibitor of nuclear factor κB kinase subunit β (IKK-β), which activates NF-κB, was slightly increased by radon inhalation. The expression of cytoplasmic ataxia-telangiectasia mutated kinase in mice inhaling radon at 500 Bq/m3 was 50% higher than in control mice. In addition, NF-κB–inducing kinase was slightly increased after inhaling radon at 2000 Bq/m3. These findings suggest that radon inhalation might induce Mn-SOD protein via NF-κB activation that occurs in response to DNA damage and oxidative stress.



2017 ◽  
Vol 58 (5) ◽  
pp. 614-625 ◽  
Author(s):  
Reo Etani ◽  
Takahiro Kataoka ◽  
Norie Kanzaki ◽  
Akihiro Sakoda ◽  
Hiroshi Tanaka ◽  
...  

ABSTRACT Radon therapy using radon (222Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Bq/m3 for 24 h or were provided with hot spring water for 2 weeks. The activity density of 222Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying). Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury.



2017 ◽  
Vol 58 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Norie Kanzaki ◽  
Takahiro Kataoka ◽  
Reo Etani ◽  
Kaori Sasaoka ◽  
Akihiro Kanagawa ◽  
...  

Abstract In our previous studies, we found that low-dose radiation inhibits oxidative stress–induced diseases due to increased antioxidants. Although these effects of low-dose radiation were demonstrated, further research was needed to clarify the effects. However, the analysis of oxidative stress is challenging, especially that of low levels of oxidative stress, because antioxidative substances are intricately involved. Thus, we proposed an approach for analysing oxidative liver damage via use of a self-organizing map (SOM)—a novel and comprehensive technique for evaluating hepatic and antioxidative function. Mice were treated with radon inhalation, irradiated with X-rays, or subjected to intraperitoneal injection of alcohol. We evaluated the oxidative damage levels in the liver from the SOM results for hepatic function and antioxidative substances. The results showed that the effects of low-dose irradiation (radon inhalation at a concentration of up to 2000 Bq/m3, or X-irradiation at a dose of up to 2.0 Gy) were comparable with the effect of alcohol administration at 0.5 g/kg bodyweight. Analysis using the SOM to discriminate small changes was made possible by its ability to ‘learn’ to adapt to unexpected changes. Moreover, when using a spherical SOM, the method comprehensively examined liver damage by radon, X-ray, and alcohol. We found that the types of liver damage caused by radon, X-rays, and alcohol have different characteristics. Therefore, our approaches would be useful as a method for evaluating oxidative liver damage caused by radon, X-rays and alcohol.



2016 ◽  
Vol 53 (11) ◽  
pp. 1681-1685
Author(s):  
Takahiro Kataoka ◽  
Reo Etani ◽  
Norie Kanzaki ◽  
Kaori Sasaoka ◽  
Yusuke Kobashi ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document