nitride semiconductors
Recently Published Documents


TOTAL DOCUMENTS

420
(FIVE YEARS 46)

H-INDEX

50
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Deependra Kumar Singh ◽  
Basanta Kumar Roul ◽  
Karuna Kar Nanda ◽  
Saluru Baba Krupanidhi

In the last few decades, there has been a phenomenal rise and evolution in the field of III–Nitride semiconductors for optoelectronic applications such as lasers, sensors and detectors. However, certain hurdles still remain in the path of designing high-performance photodetectors (PDs) based on III-Nitride semiconductors considering their device performance. Recently, a lot of progress has been achieved in devices based on the high quality epilayers grown by molecular beam epitaxy (MBE). Being an ultra-high vacuum environment based-technique, MBE has enabled the realization of high-quality and highly efficient PDs which have exhibited competitive figures of merit to that of the commercial PDs. Moreover, by combining the novel properties of 2D materials with MBE-grown III-Nitrides, devices with enhanced functionalities have been realized which would pave a way towards the next-generation photonics. In the current chapter, the basic concepts about photodetection have been presented in detail, followed by a discussion on the basic properties of the III-Nitride semiconductors, and the recent advancements in the field of MBE-grown III-Nitrides-based PDs, with an emphasis on their hybrid structures. Finally, an outlook has been provided highlighting the present shortcomings as well as the unresolved issues associated with the present-day devices in this emerging field of research.


2021 ◽  
Vol 32 (18) ◽  
pp. 185301
Author(s):  
Giorgio Pettinari ◽  
Gianluca Marotta ◽  
Francesco Biccari ◽  
Antonio Polimeni ◽  
Marco Felici

Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 3-21
Author(s):  
Claude Weisbuch ◽  
Shuji Nakamura ◽  
Yuh-Renn Wu ◽  
James S. Speck

AbstractSemiconductor structures used for fundamental or device applications most often incorporate alloy materials. In “usual” or “common” III–V alloys, based on the InGaAsP or InGaAlAs material systems, the effects of compositional disorder on the electronic properties can be treated in a perturbative approach. This is not the case in the more recent nitride-based GaInAlN alloys, where the potential changes associated with the various atoms induce strong localization effects, which cannot be described perturbatively. Since the early studies of these materials and devices, disorder effects have indeed been identified to play a major role in their properties. Although many studies have been performed on the structural characterization of materials, on intrinsic electronic localization properties, and on the impact of disorder on device operation, there are still many open questions on all these topics. Taking disorder into account also leads to unmanageable problems in simulations. As a prerequisite to address material and device simulations, a critical examination of experiments must be considered to ensure that one measures intrinsic parameters as these materials are difficult to grow with low defect densities. A specific property of nitride semiconductors that can obscure intrinsic properties is the strong spontaneous and piezoelectric fields. We outline in this review the remaining challenges faced when attempting to fully describe nitride-based material systems, taking the examples of LEDs. The objectives of a better understanding of disorder phenomena are to explain the hidden phenomena often forcing one to use ad hoc parameters, or additional poorly defined concepts, to make simulations agree with experiments. Finally, we describe a novel simulation tool based on a mathematical breakthrough to solve the Schrödinger equation in disordered potentials that facilitates 3D simulations that include alloy disorder.


Sign in / Sign up

Export Citation Format

Share Document