scholarly journals Obtaining of Granulated Gypsum Anhydrite on the Basis of Technogenic Wastes of Chemical and Metallurgical Complex for Use in Portland Cement Production

2020 ◽  
Author(s):  
Alexander Ponomarenko

The composition and properties of fluorine–anhydrite and steel–refining slag which are wastes of production of hydrogen fluoride and steel were determined. It is established that fluorine–anhydrite of the current output does not meet the requirements to materials for the production of Portland cement. Therefore to improve the technical and consumer properties of fluorine-anhydrite (for increasing the amount of CaSO4 ⋅2H2O and neutralization of H2SO4) the studies of its’ conditioning processes with steel– refining slag were carried out. It was found that the mass transfer coefficient of sulfuric acid through the capillary and the degree of its neutralization by slag depend on the dispersion of fluorine–anhydrite, its porosity and initial acidity. The most effective binding of sulfuric acid occurs with the introduction of slag in stoichiometric amounts, the size of fluorine–anhydrite granules up to 20 mm and a processing time of 60 minutes. After storage in air-humid conditions for 12 hours of fluorine–anhydrite treated with slag the strength of its granules, the amount of dihydrate gypsum and toxicological properties meet the requirements. Keywords: techno–gypsum, refining slag, neutralization, conditioning, gypsum stone, Portland cement

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2291
Author(s):  
Alessandro P. Fantilli ◽  
Daria Jóźwiak-Niedźwiedzka

The environmental impact of the Portland cement production and the large use of cement-based building materials is a growing problem [...]


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1302
Author(s):  
Andrés Játiva ◽  
Evelyn Ruales ◽  
Miren Etxeberria

The construction industry is affected by the constant growth in the populations of urban areas. The demand for cement production has an increasing environmental impact, and there are urgent demands for alternative sustainable solutions. Volcanic ash (VA) is an abundant low-cost material that, because of its chemical composition and amorphous atomic structure, has been considered as a suitable material to replace Portland cement clinker for use as a binder in cement production. In the last decade, there has been interest in using alkali-activated VA material as an alternative material to replace ordinary Portland cement. In this way, a valuable product may be derived from a currently under-utilized material. Additionally, alkali-activated VA-based materials may be suitable for building applications because of their good densification behaviour, mechanical properties and low porosity. This article describes the most relevant findings from researchers around the world on the role of the chemical composition and mineral contents of VA on reactivity during the alkali-activation reaction; the effect of synthesis factors, which include the concentration of the alkaline activator, the solution-to-binder ratio and the curing conditions, on the properties of alkali-activated VA-based materials; and the mechanical performance and durability properties of these materials.


2020 ◽  
Vol 15 (4) ◽  
pp. 185-197
Author(s):  
Daniel Hatungimana ◽  
Şemsi Yazici ◽  
Şevket Orhan ◽  
Ali Mardani-Aghabaglou

ABSTRACT Portland cement is extensively used as a binder in concrete production. However, with Portland cement production, 5% of the natural resources used in this production are consumed, constituting 5–7% of the total CO2 emission. In order to mitigate the environmental problems associated with cement production, styrene-butadiene rubber latex was used as cement replacement up to 20%. In this study, compressive strength, flexural strength, unit weight, water absorption, open porosity, water sorptivity and the chloride ion permeability of Portland cement mortar mixtures modified by styrene-butadiene rubber (SBR) polymeric latex were investigated. For this purpose, the sand/cement ratio and the water/cement ratio were kept constant as 3/1 and 0.5, respectively. In addition to the control mixture containing no polymer, 1, 2, 3, 5, 10 and 20 wt.% of cement was replaced with SBR. In this way, seven mortar mixtures were prepared. Mixed curing (wet cure and dry cure) method was applied to the mortar specimens. Results showed that up to a 5% replacement level, it is possible to improve the mechanical properties of cement mortars with SBR latex addition. However, at a 10% and 20% replacement level, SBR had a significant detrimental effect on the mechanical properties of polymer modified mortars. However, the transport properties decreased with the incorporation rate of SBR latex and the detrimental effect of SBR replacement was more pronounced in 20% SBR mortar mixtures.


2009 ◽  
Vol 12 (4) ◽  
pp. 489-494 ◽  
Author(s):  
Mónica Adriana Trezza ◽  
Alberto Néstor Scian

2013 ◽  
Vol 699 ◽  
pp. 578-583 ◽  
Author(s):  
Neven Ukrainczyk ◽  
Jure Zlopasa ◽  
Eduard Koenders

The enormous carbon footprint associated with the global cement production (5-7%) asks for a radical change in the use of sustainable replacement materials in concrete. Replacement of cement by pozzolanic waste materials, being a by-product from industrial processes, has been widely recognized as the most promising route towards sustainable construction materials. This paper presents experimental study on hydration of commercial Portland cement blended with silica fume in replacement ratio of 15 mass %. Isothermal calorimetry was employed to monitor the hydration kinetics. Thermogravimetric analysis coupled by differential scanning calorimeter (TG/DSC) was used to investigate the formed hydration products at 1, 3, 7, and 28 days of hydration. Two different approaches for a dispersion of silica fume in cement paste were compared: ultrasound bath and addition of superplasticizer (polycarboxylic ether based).


Sign in / Sign up

Export Citation Format

Share Document