scholarly journals The Synthesis of Azasugars Using an I2-mediated Carbamate Annulation

2021 ◽  
Author(s):  
◽  
Anna Louise Win-Mason

<p>The biological activity of azasugars has largely been attributed to their ability to mimic the oxocarbenium ion-like transition state formed during reactions with carbohydrate-processing enzymes and, for this reason, functional and stereochemical modifications of the azasugar scaffold have led to the development of specific and potent glycosidase inhibitors. Given the potential of azasugars as glycosidase inhibitors, we were interested in developing efficient methodology for their synthesis. This thesis highlights synthetic methodology developed to produce amino-imino-hexitols as azasugar scaffolds. Key in the synthesis of the amino-imino-hexitols was the application of a stereoselective Strecker reaction, without the need for chiral Lewis acids or catalysts, and an extension of an I2-mediated carbamate annulation to cyclise functionalised and protected alkenylamines. Sixteen amino-imino-hexitols were synthesized, including ten previously undisclosed substrates with the D-galacto, D-talo, and L-altro configurations. The novel amino-imino-hexitols were then tested for their ability to act as glycosidase inhibitors and substrates of the D-talo configuration showed promising inhibitory effects. Mechanistic considerations of the I2-mediated carbamate annulation are discussed and although the exact annulation mechanism has yet to be determined, experimental studies have revealed that an aziridine is not an intermediate in the reaction. Factors influencing the diastereoselectivity of the carbamate annulation are also explored. Furthermore, an in depth analysis of the high cis-selectivity of the carbamate annulation is investigated using density functional theory to calculate the transition states of iodocyclisations en route to the formation of carbamates. Taken as a whole, the applicability of the carbamate annulation to a variety of alkenylamines and an understanding of the factors controlling the diastereoselectivity of the reaction should make this methodology a valuable addition to the synthetic chemist’s toolbox.</p>

2021 ◽  
Author(s):  
◽  
Anna Louise Win-Mason

<p>The biological activity of azasugars has largely been attributed to their ability to mimic the oxocarbenium ion-like transition state formed during reactions with carbohydrate-processing enzymes and, for this reason, functional and stereochemical modifications of the azasugar scaffold have led to the development of specific and potent glycosidase inhibitors. Given the potential of azasugars as glycosidase inhibitors, we were interested in developing efficient methodology for their synthesis. This thesis highlights synthetic methodology developed to produce amino-imino-hexitols as azasugar scaffolds. Key in the synthesis of the amino-imino-hexitols was the application of a stereoselective Strecker reaction, without the need for chiral Lewis acids or catalysts, and an extension of an I2-mediated carbamate annulation to cyclise functionalised and protected alkenylamines. Sixteen amino-imino-hexitols were synthesized, including ten previously undisclosed substrates with the D-galacto, D-talo, and L-altro configurations. The novel amino-imino-hexitols were then tested for their ability to act as glycosidase inhibitors and substrates of the D-talo configuration showed promising inhibitory effects. Mechanistic considerations of the I2-mediated carbamate annulation are discussed and although the exact annulation mechanism has yet to be determined, experimental studies have revealed that an aziridine is not an intermediate in the reaction. Factors influencing the diastereoselectivity of the carbamate annulation are also explored. Furthermore, an in depth analysis of the high cis-selectivity of the carbamate annulation is investigated using density functional theory to calculate the transition states of iodocyclisations en route to the formation of carbamates. Taken as a whole, the applicability of the carbamate annulation to a variety of alkenylamines and an understanding of the factors controlling the diastereoselectivity of the reaction should make this methodology a valuable addition to the synthetic chemist’s toolbox.</p>


2019 ◽  
Vol 21 (44) ◽  
pp. 24478-24488 ◽  
Author(s):  
Martin Gleditzsch ◽  
Marc Jäger ◽  
Lukáš F. Pašteka ◽  
Armin Shayeghi ◽  
Rolf Schäfer

In depth analysis of doping effects on the geometric and electronic structure of tin clusters via electric beam deflection, numerical trajectory simulations and density functional theory.


2019 ◽  
Vol 19 (6) ◽  
pp. 419-433 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Liudmila Filippovich ◽  
Evgenij Dikusar ◽  
Anhelina Pazniak ◽  
...  

: In this study, the antioxidant property of new synthesized azomethins has been investigated as theoretical and experimental. Methods and Results: Density functional theory (DFT) was employed to investigate the Bond Dissociation Enthalpy (BDE), Mulliken Charges, NBO analysis, Ionization Potential (IP), Electron Affinities (EA), HOMO and LUMO energies, Hardness (η), Softness (S), Electronegativity (µ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) in order to deduce scavenging action of the two new synthesized azomethines (FD-1 and FD-2). Spin density calculations and NBO analysis were also carried out to understand the antioxidant activity mechanism. Comparison of BDE of FD-1 and FD-2 indicate the weal antioxidant potential of these structures. Conclusion: FD-1 and FD-2 have very high antioxidant potential due to the planarity and formation of intramolecular hydrogen bonds.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 246
Author(s):  
Disha Varijakzhan ◽  
Jiun-Yan Loh ◽  
Wai-Sum Yap ◽  
Khatijah Yusoff ◽  
Rabiha Seboussi ◽  
...  

Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 198 ◽  
Author(s):  
Michèle Chevrier ◽  
Alberto Fattori ◽  
Laurent Lasser ◽  
Clément Kotras ◽  
Clémence Rose ◽  
...  

Chlorophyll a derivatives were integrated in “all solid-state” dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2′,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


2021 ◽  
pp. 2150154
Author(s):  
Wenchao Tian ◽  
Jiahao Niu ◽  
Wenhua Li ◽  
Xiaohan Liu

The two-dimensional (2D) plane of graphene has many active sites for gas adsorption. It has broad application prospects in the field of MEMS gas sensors. At present, there are many experimental studies on graphene gas sensors, but it is difficult to accurately control various influencing factors in the experiments. Therefore, this paper applies the first principle based on density functional theory to study the adsorption and detection characteristics of graphene on CO and CO2. The first-principles analysis method was used to study the adsorption characteristics and sensitivity of graphene. The results show that the inductive graphene has a sensitivity of 1.55% and 0.77% for CO and CO2, respectively. The Stone–Wales defects and multi-vacancy defects have greatly improved the sensitivity of graphene to CO, which is 35.25% and 4.14%, respectively. Introduction of defects increases the sensitivity of detection of CO and CO2, but also improves the selective gas detection material of these two gases. Thus, the control and selectively introducing defects may improve the detection accuracy of the graphene CO and CO2.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2006 ◽  
Author(s):  
Murugesan Rasukkannu ◽  
Dhayalan Velauthapillai ◽  
Federico Bianchini ◽  
Ponniah Vajeeston

Due to the low absorption coefficients of crystalline silicon-based solar cells, researchers have focused on non-silicon semiconductors with direct band gaps for the development of novel photovoltaic devices. In this study, we use density functional theory to model the electronic structure of a large database of candidates to identify materials with ideal properties for photovoltaic applications. The first screening is operated at the GGA level to select only materials with a sufficiently small direct band gap. We extracted twenty-seven candidates from an initial population of thousands, exhibiting GGA band gap in the range 0.5–1 eV. More accurate calculations using a hybrid functional were performed on this subset. Based on this, we present a detailed first-principle investigation of the four optimal compounds, namely, TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO. The direct band gap of these materials is between 1.1 and 2.26 eV. In the visible region, the absorption peaks that appear in the optical spectra for these compounds indicate high absorption intensity. Furthermore, we have investigated the structural and mechanical stability of these compounds and calculated electron effective masses. Based on in-depth analysis, we have identified TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO as very promising candidates for photovoltaic applications.


2020 ◽  
pp. 2776-2796
Author(s):  
Rehab M Kubba ◽  
Nada M. Al-Joborry ◽  
Naeemah J. Al-lami

Two derivatives of Iimidazolidin 4-one (IMID4) and Oxazolidin 5-one (OXAZ5), were investigated as corrosion inhibitors of corrosion carbon steel in sea water by employing the theoretical and experimental methods. The results revealed that they inhibit the corrosion process and their %IE followed the order: IMID4 (89.093%) > OXAZ5 (80.179%). The %IE obtained via theoretical and experimental methods were in a good agreement with each other. The thermodynamic parameters obtained by potentiometric polarization measurements have supported a physical adsorption mechanism which followed Langmuir adsorption isotherm. Quantum mechanical method of Density Functional Theory (DFT) of B3LYP with a level of 6-311++G (2d, 2p) were used to calculate the geometrical structure, physical properties and inhibition efficiency parameters, in vacuum and two solvents (DMSO and H2O), all calculated at the equilibrium geometry, and correlated with the experimental %IE. The local reactivity has been studied through Mulliken charges population analysis. The morphology of the surface changes of carbon steel were studied using SEM and AFM techniques.


Author(s):  
Anant Babu Marahatta

Among the ions classified in the Hofmeister series, the firstly ranked divalent sulfate anion has the strongest hydrating and water-structure making propensity. This unique characteristic actually makes it kosmotropic which causes water molecules to interact each other and contributes to gain structural stability of its hydrated clusters [SO42−(H2O)n]n = 1−40. In this study, few variably sized microhydrated sulfate clusters [SO42−(H2O)n]n = 1−4, 16 are considered separately, and inquired their chemical energetics and atomic charge distributions through ab initio based theoretical model. The main objective of this insight is to specify and interpret their thermodynamic stabilities, binding energies, and specific bonding and electronic interactions quantum mechanically. An in-depth analysis of their change in relative ground state electronic energy with respect to hydration number indicates stronger affinity of the sulfate ion towards water molecules while attaining structural stability in any aqueous type solutions. The mathematically determined values of their binding energy (DE) almost holds up the same with this structural stability order: [SO42−(H2O)16] > [SO42−(H2O)4] > [SO42−(H2O)3] > [SO42−(H2O)2] > [SO42−(H2O)], as reliable as experimentally and molecular dynamics simulation predicted trend. Moreover, the Mulliken derived partial atomic charges feature qualitative charge distribution in them which not only depicts electronic interactions between the specific atoms but also exemplifies the involvement of central sulfate units in hydrogen bond formation with surrounding water molecules.


Sign in / Sign up

Export Citation Format

Share Document