scholarly journals Protonation-Induced Charge Transfer and Polaron Formation in Organic Semiconductors Doped by Lewis Acids

Author(s):  
Fabian Bauch ◽  
Chuanding Dong ◽  
Stefan Schumacher

Lewis acid doping of organic semiconductors (OSCs) opens up new ways of p-type doping and has recently become of significant interest. As for the mechanistic understanding, it was recently proposed that upon protonation of the OSC backbone, electron transfer occurs between the protonated polymer chain and a neutral chain nearby, inducing a positive charge carrier in the latter [Nat. Mater. 18, 1327 (2019)]. To further clarify the underlying microscopic processes on a molecular level, in the present work, we analyze the influence of protons on the electronic properties of the widely used PCPDT–BT copolymer. We find that single protonation of the polymer chain leads to the formation of a polaron coupled to the position of the proton. Upon protonation of the same chain with a second proton, an intrachain electron transfer occurs, leaving behind a polaron largely decoupled from the proton positions. We also observe the possibility of an interchain electron transfer from a neutral chain to a double protonated chain in agreement with the mechanism recently proposed in the literature. The simulated vertical excitation spectra for an ensemble of protonated species with different amounts of protons enable a detailed interpretation of experimental observation on PCPDT–BT doped with the Lewis acid BCF. Our results further suggest that multi-protonation plays an important role for completing the mechanistic picture of Lewis acid doping of OSCs.

2020 ◽  
Author(s):  
Chuanding Dong ◽  
Stefan Schumacher

<p>The mechanistic study of molecular doping of organic semiconductors (OSC) requires</p><p>an improved understanding of the role and formation of integer charge transfer complexes</p><p>(ICTC) on a microscopic level. In the present work we go one crucial step beyond</p><p>the simplest scenario of an isolated bi-molecular ICTC and study ICTCs formed of</p><p>up to two (poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b,3,4-b”]dithiophene)-alt-4,7-(2,1,3-</p><p>benzothiadiazole)](PCPDT-BT) oligomers and up to two CN6-CP molecules. We find that depending</p><p>on geometric arrangement, complexes containing two conjugated oligomers and two</p><p>dopant molecules can show p-type doping with double integer charge transfer, resulting in either</p><p>two singly doped oligomers or one doubly doped oligomer. Interestingly, compared to an individual</p><p>oligomer-dopant complex, the resulting in-gap states on the doped oligomers are significantly</p><p>lowered in energy. Indicating that, already in the relatively small systems studied here, Coulomb</p><p>binding of the doping-induced positive charge to the counter-ion is reduced which is an elemental</p><p>step towards generating mobile charge carriers through molecular doping.</p>


2020 ◽  
Author(s):  
Chuanding Dong ◽  
Stefan Schumacher

<p>The mechanistic study of molecular doping of organic semiconductors (OSC) requires</p><p>an improved understanding of the role and formation of integer charge transfer complexes</p><p>(ICTC) on a microscopic level. In the present work we go one crucial step beyond</p><p>the simplest scenario of an isolated bi-molecular ICTC and study ICTCs formed of</p><p>up to two (poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b,3,4-b”]dithiophene)-alt-4,7-(2,1,3-</p><p>benzothiadiazole)](PCPDT-BT) oligomers and up to two CN6-CP molecules. We find that depending</p><p>on geometric arrangement, complexes containing two conjugated oligomers and two</p><p>dopant molecules can show p-type doping with double integer charge transfer, resulting in either</p><p>two singly doped oligomers or one doubly doped oligomer. Interestingly, compared to an individual</p><p>oligomer-dopant complex, the resulting in-gap states on the doped oligomers are significantly</p><p>lowered in energy. Indicating that, already in the relatively small systems studied here, Coulomb</p><p>binding of the doping-induced positive charge to the counter-ion is reduced which is an elemental</p><p>step towards generating mobile charge carriers through molecular doping.</p>


2021 ◽  
Author(s):  
Pablo Simon Marques ◽  
Giacomo Londi ◽  
Brett Yurash ◽  
Thuc-Quyen Nguyen ◽  
Stephen Barlow ◽  
...  

We report on computational studies of the potential of three borane Lewis acids (LAs) (B(C6F5)3 (BCF), BF3, and BBr3) to form stable adducts and/or to generate positive polarons with three...


2008 ◽  
Vol 61 (8) ◽  
pp. 610 ◽  
Author(s):  
Guozhi Fan ◽  
Hanjun Zhang ◽  
Siqing Cheng ◽  
Zhandong Ren ◽  
Zhijun Hu ◽  
...  

Palladium chloride anchored on polystyrene modified by 5-amino-1,10-phenanthroline was prepared and used as an efficient recoverable catalyst for Suzuki cross-coupling reactions. The heterogeneous catalysts can be easily separated from the reaction mixture and reused for five cycles without significant Pd leaching and loss of catalytic activity. Rate enhancement in the Suzuki reaction by Lewis acids was also studied.


2017 ◽  
Vol 15 (15) ◽  
pp. 3216-3231 ◽  
Author(s):  
Anika Flader ◽  
Silvio Parpart ◽  
Peter Ehlers ◽  
Peter Langer
Keyword(s):  

Functionalized pyrrolo[1,2-a]naphthyridines were synthesized by application of PtCl2 and Bi(OTf)3 as simple Lewis acids in a cycloisomerization reaction.


2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


Sign in / Sign up

Export Citation Format

Share Document