scholarly journals Unfolding the relationship between seasonal forecast skill and value in hydropower production: A global analysis

2021 ◽  
Author(s):  
Donghoon Lee ◽  
Jia Yi Ng ◽  
Stefano Galelli ◽  
Paul Block

Abstract. The potential benefits of seasonal streamflow forecasts for the hydropower sector have been evaluated for several basins across the world, but with contrasting conclusions on the expected benefits. This raises the prospect of a complex relationship between reservoir characteristics, forecast skill and value. Here, we unfold the nature of this relationship by studying time series of simulated power production for 735 headwater dams worldwide. The time series are generated by running a detailed dam model over the period 1958–2000 with three operating schemes: basic control rules, perfect forecast-informed, and realistic forecast-informed. The realistic forecasts are issued by tailored statistical prediction models—based on lagged global and local hydro-climatic variables—predicting seasonal monthly dam inflows. As expected, results show that most dams (94 %) could benefit from perfect forecasts. Yet, the benefits for each dam vary greatly and are primarily controlled by the time-to-fill and the ratio between reservoir depth and hydraulic head. When realistic forecasts are adopted, 25 % of dams demonstrate improvements with respect to basic control rules. In this case, the likelihood of observing improvements is controlled not only by design specifications but also by forecast skill. We conclude our analysis by identifying two groups of dams of particular interest: dams that fall in regions expressing strong forecast accuracy and have the potential to reap benefits from forecast-informed operations, and dams with strong potential to benefit from forecast-informed operations but fall in regions lacking forecast accuracy. Overall, these results represent a first qualitative step towards informing site-specific hydropower studies.

2013 ◽  
Vol 14 (5) ◽  
pp. 1587-1604 ◽  
Author(s):  
Eric A. Rosenberg ◽  
Andrew W. Wood ◽  
Anne C. Steinemann

Abstract A hydrometric network design approach is developed for enhancing statistical seasonal streamflow forecasts. The approach employs gridded, model-simulated water balance variables as predictors in equations generated via principal components regression in order to identify locations for additional observations that most improve forecast skill. The approach is applied toward the expansion of the Natural Resources Conservation Service (NRCS) Snowpack Telemetry (SNOTEL) network in 24 western U.S. basins using two forecasting scenarios: one that assumes the currently standard predictors of snow water equivalent and water year-to-date precipitation and one that considers soil moisture as an additional predictor variable. Resulting improvements are spatially and temporally analyzed, attributed to dominant predictor contributions, and evaluated in the context of operational NRCS forecasts, ensemble-based National Weather Service (NWS) forecasts, and historical as-issued NRCS/NWS coordinated forecasts. Findings indicate that, except for basins with sparse existing networks, substantial improvements in forecast skill are only possible through the addition of soil moisture variables. Furthermore, locations identified as optimal for soil moisture sensor installation are primarily found in regions of low to mid elevation, in contrast to the higher elevations where SNOTEL stations are traditionally situated. The study corroborates prior research while demonstrating that soil moisture data can explicitly improve operational water supply forecasts (particularly during the accumulation season), that statistical forecasts are comparable in skill to ensemble-based forecasts, and that simulated hydrologic data can be combined with observations to improve statistical forecasts. The approach can be generalized to other settings and applications involving the use of point observations for statistical prediction models.


2017 ◽  
Author(s):  
Justin Delorit ◽  
Edmundo Cristian Gonzalez Ortuya ◽  
Paul Block

Abstract. In many semi-arid regions, agriculture, energy, municipal, and environmental demands often stress available water supplies. Such is the case in the Elqui River valley of northern Chile, which draws on a limited capacity reservoir and annually variable snowmelt. With infrastructure investments often deferred or delayed, water managers are forced to address demand-based allocation strategies, particularly challenging in dry years. This is often realized through a reduction in the volume associated with each water right, applied across all water rights holders. Skillful season-ahead streamflow forecasts have the potential to inform managers with an indication of likely future conditions upon which to set the annual water right volume and thereby guide reservoir allocations. This work evaluates season-ahead statistical prediction models of October-January (austral growing season) streamflow at multiple lead times associated with manager and user decision points, and link predictions with a simple reservoir allocation tool.


2021 ◽  
Author(s):  
Colin Keating ◽  
Donghoon Lee ◽  
Juan Bazo ◽  
Paul Block

Abstract. Disaster planning has historically allocated minimal effort and finances toward advanced preparedness, however evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to appropriately trigger flood early preparedness actions based on a 75 % or greater probability of surpassing the 80th percentile of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO phenomenon. Additionally, a multi-model (least squares combination) is also evaluated against current operational practices. The statistical and multi-model predictions demonstrate superior performance compared to the physically based model for the Marañón River by correctly triggering preparedness actions in all four historical occasions. For the Piura River, the statistical model proves superior to all other approaches, and even achieves an 86 % hit rate when the required threshold exceedance probability is reduced to 50 %, with only one false alarm. Continued efforts should focus on applying this season-ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast capacity is limited.


2017 ◽  
Vol 21 (9) ◽  
pp. 4711-4725 ◽  
Author(s):  
Justin Delorit ◽  
Edmundo Cristian Gonzalez Ortuya ◽  
Paul Block

Abstract. In many semi-arid regions, multisectoral demands often stress available water supplies. Such is the case in the Elqui River valley of northern Chile, which draws on a limited-capacity reservoir to allocate 25 000 water rights. Delayed infrastructure investment forces water managers to address demand-based allocation strategies, particularly in dry years, which are realized through reductions in the volume associated with each water right. Skillful season-ahead streamflow forecasts have the potential to inform managers with an indication of future conditions to guide reservoir allocations. This work evaluates season-ahead statistical prediction models of October–January (growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions with a reservoir allocation tool. Skillful results (streamflow forecasts outperform climatology) are produced for short lead times (1 September: ranked probability skill score (RPSS) of 0.31, categorical hit skill score of 61 %). At longer lead times, climatological skill exceeds forecast skill due to fewer observations of precipitation. However, coupling the 1 September statistical forecast model with a sea surface temperature phase and strength statistical model allows for equally skillful categorical streamflow forecasts to be produced for a 1 May lead, triggered for 60 % of years (1950–2015), suggesting forecasts need not be strictly deterministic to be useful for water rights holders. An early (1 May) categorical indication of expected conditions is reinforced with a deterministic forecast (1 September) as more observations of local variables become available. The reservoir allocation model is skillful at the 1 September lead (categorical hit skill score of 53 %); skill improves to 79 % when categorical allocation prediction certainty exceeds 80 %. This result implies that allocation efficiency may improve when forecasts are integrated into reservoir decision frameworks. The methods applied here advance the understanding of the mechanisms and timing responsible for moisture transport to the Elqui Valley and provide a unique application of streamflow forecasting in the prediction of water right allocations.


2021 ◽  
Vol 21 (7) ◽  
pp. 2215-2231
Author(s):  
Colin Keating ◽  
Donghoon Lee ◽  
Juan Bazo ◽  
Paul Block

Abstract. Disaster planning has historically allocated minimal effort and finances toward advanced preparedness; however, evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to appropriately trigger flood early preparedness actions based on a 75 % or greater probability of surpassing the 80th percentile of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO phenomenon. Additionally, a multi-model (least-squares combination) is also evaluated against current operational practices. The statistical prediction demonstrates superior performance compared to the physically based model for the Marañón River by correctly triggering preparedness actions in three out of four historical occasions, while both the statistical and multi-model predictions capture all four historical events when the required threshold exceedance probability is reduced to 50 %, with only one false alarm. For the Piura River, the statistical model proves superior to all other approaches, correctly triggering 28 % more often in the hindcast period. Continued efforts should focus on applying this season-ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast capacity is limited.


2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.


2017 ◽  
Vol 145 (10) ◽  
pp. 4127-4150 ◽  
Author(s):  
Syed Zahid Husain ◽  
Claude Girard

Inconsistencies may arise in numerical weather prediction models—that are based on semi-Lagrangian advection—when the governing dynamical and the kinematic trajectory equations are discretized in a dissimilar manner. This study presents consistent trajectory calculation approaches, both in the presence and absence of off-centering in the discretized dynamical equations. Both uniform and differential off-centering in the discretized dynamical equations have been considered. The proposed consistent trajectory calculations are evaluated using numerical experiments involving a nonhydrostatic two-dimensional theoretical mountain case and hydrostatic global forecasts. The experiments are carried out using the Global Environmental Multiscale model. Both the choice of the averaging method for approximating the velocity integral in the discretized trajectory equations and the interpolation scheme for calculating the departure positions are found to be important for consistent trajectory calculations. Results from the numerical experiments confirm that the proposed consistent trajectory calculation approaches not only improve numerical consistency, but also improve forecast accuracy.


2017 ◽  
Vol 21 (9) ◽  
pp. 4841-4859 ◽  
Author(s):  
Sean W. D. Turner ◽  
James C. Bennett ◽  
David E. Robertson ◽  
Stefano Galelli

Abstract. Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strong relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.


2019 ◽  
Vol 35 (2) ◽  
pp. 955-976 ◽  
Author(s):  
DongSoon Park ◽  
Tadahiro Kishida

It is important to investigate strong-motion time series recorded at dams to understand their complex seismic responses. This paper develops a strong-motion database recorded at existing embankment dams and analyzes correlations between dam dynamic responses and ground-motion parameters. The Japan Commission on Large Dams database used here includes 190 recordings at the crests and foundations of 60 dams during 54 earthquakes from 1978 to 2012. Seismic amplifications and fundamental periods from recorded time series were computed and examined by correlation with shaking intensities and dam geometries. The peak ground acceleration (PGA) at the dam crest increases as the PGA at the foundation bedrock increases, but their ratio gradually decreases. The fundamental period broadly increases with the dam height and PGA at the foundation bedrock. The nonlinear dam response becomes more apparent as the PGA at the foundation bedrock becomes >0.2 g. The prediction models of these correlations are proposed for estimating the seismic response of embankment dams, which can inform the preliminary design stage.


Agromet ◽  
2007 ◽  
Vol 21 (2) ◽  
pp. 46 ◽  
Author(s):  
W. Estiningtyas ◽  
F. Ramadhani ◽  
E. Aldrian

<p>Significant decrease in rainfall caused extreme climate has significant impact on agriculture sector, especialy food crops production. It is one of reason and push developing of rainfall prediction models as anticipate from extreme climate events. Rainfall prediction models develop base on time series data, and then it has been included anomaly aspect, like rainfall prediction model with Kalman filtering method. One of global parameter that has been used as climate anomaly indicator is sea surface temperature. Some of research indicate, there are relationship between sea surface temperature and rainfall. Relationship between Indonesian rainfall and global sea surface temperature has been known, but its relationship with Indonesian’s sea surface temperature not know yet, especialy for rainfall in smaller area like district. So, therefore the research about relationship between rainfall in distric area and Indonesian’s sea surface temperature and it application for rainfall prediction is needed. Based on Indonesian’s sea surface temperature time series data Januari 1982 until Mei 2006 show there are zona of Indonesian’s sea surface temperature (with temperature more than 27,6 0C) dominan in Januari-Mei and moved with specific pattern. Highest value of spasial correlation beetwen Cilacap’s rainfall and Indonesian’s sea surface temperature is 0,30 until 0,50 with different zona of Indonesian’s sea surface temperature. Highest positive correlation happened in March and July. Negative correlation is -0,30 until -0,70 with highest negative correlation in May and June. Model validation resulted correlation coeffcient 85,73%, fits model 20,74%, r2 73,49%, RMSE 20,5% and standart deviation 37,96. Rainfall prediction Januari-Desember 2007 period indicated rainfall pattern is near same with average rainfall pattern, rainfall less than 100/month. The result of this research indicate Indonesian’s sea surface temperature can be used as indicator rainfall condition in distric area, that means rainfall in district area can be predicted based on Indonesian’s sea surface temperature in zona with highest correlation in every month.</p><p>------------------------------------------------------------------</p><p>Penurunan curah hujan yang cukup signifikan akibat iklim ekstrim telah membawa dampak yang cukup signifikan pula pada sektor pertanian, terutama produksi tanaman pangan. Hal ini menjadi salah satu alasan yang mendorong semakin berkembangnya model-model prakiraan hujan sebagai upaya antipasi terhadap kejadian iklim ekstrim. Model prakiraan hujan yang pada awalnya hanya berbasis pada data time series, kini telah berkembang dengan memperhitungkan aspek anomali iklim, seperti model prakiraan hujan dengan metode filter Kalman. Salah satu indikator global yang dapat digunakan sebagai indikator anomali iklim adalah suhu permukaan laut. Dari berbagai hasil penelitian diketahui bahwa suhu permukaan laut ini memiliki keterkaitan dengan kejadian curah hujan. Hubungan curah hujan Indonesia dengan suhu permukaan laut global sudah banyak diketahui, tetapi keterkaitannya dengan suhu permukaan laut wilayah Indonesia belum banyak mendapat perhatian, terutama untuk curah hujan pada cakupan yang lebih sempit seperti kabupaten. Oleh karena itu perlu dilakukan penelitian yang mengkaji hubungan kedua parameter tersebut serta mengaplikasikannya untuk prakiraan curah hujan pada wilayah Kabupaten. Hasil penelitian berdasarkan data suhu permukaan laut wilayah Indonesia rata-rata Januari 1982 hingga Mei 2006 menunjukkan zona dengan suhu lebih dari 27,6 0C yang dominan pada bulan Januari-Mei dan bergerak dengan pola yang cukup jelas. Korelasi spasial antara curah hujan kabupaten Cilacap dengan SPL wilayah Indonesia rata-rata bulan Januari-Desember menunjukkan korelasi positip tertinggi antara 0,30 hingga 0,50 dengan zona SPL yang beragam. Korelasi tertinggi terjadi pada bulan Maret dan Juli. Sedangkan korelasi negatip berkisar antara -0,30 hingga -0,70 dengan korelasi negatip tertinggi pada bulan Mei dan Juni. Validasi model prakiraan hujan menghasilkan nilai koefisien korelasi 85,73%, fits model 20,74%, r2 sebesar 73,49%, RMSE 20,5% dan standar deviasi 37,96. Hasil prakiraan hujan bulanan periode Januari-Desember 2007 mengindikasikan pola curah hujan yang tidak jauh berbeda dengan rata-rata selama 19 tahun (1988-2006) dengan jeluk hujan kurang dari 100 mm/bulan. Hasil penelitian mengindikasikan bahwa SPL wilayah Indonesia dapat digunakan sebagai indikator untuk menunjukkan kondisi curah hujan di suatu wilayah (kabupaten), artinya curah hujan dapat diprediksi berdasarkan perubahan SPL pada zona-zona dengan korelasi yang tertinggi pada setiap bulannya.</p>


Sign in / Sign up

Export Citation Format

Share Document