scholarly journals Prevalence of Microplastics in the Eastern Oyster Crassostrea virginica in the Chesapeake Bay: The Impact of Different Digestion Methods on Microplastic Properties

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Thet Aung ◽  
Inayat Batish ◽  
Reza Ovissipour

This study aimed to determine the microplastic prevalence in eastern oysters (C. virginica) in three sites in the Chesapeake Bay in Virginia and optimize the digestion methods. The digestion results illustrate that the lowest recovery rate and digestion recovery were related to enzymatic, enzymatic + hydrogen peroxide (H2O2), and HCl 5% treatments, while the highest digestion recovery and recovery rate were observed in H2O2 and basic (KOH) treatments. Nitric acid digestion resulted in satisfying digestion recovery (100%), while no blue polyethylene microplastics were observed due to the poor recovery rate. In addition, nitric acid altered the color, changed the Raman spectrum intensity, and melted polypropylene (PP) and polyethylene terephthalate (PET). In order to determine the number of microplastics, 144 oysters with an approximately similar size and weight from three sites, including the James River, York River, and Eastern Shore, were evaluated. Fragments were the most abundant microplastics among the different microplastics, followed by fibers and beads, in the three sites. A significantly higher number of fragments were found in the James River, probably due to the greater amount of human activities. The number of microplastics per gram of oyster tissue was higher in the James River, with 7 MPs/g tissue, than in the York River and Eastern Shore, with 6.7 and 5.6 MPs/g tissue.

Diversity ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 87
Author(s):  
Ellen Neff ◽  
Jessica MacGregor ◽  
Keryn B. Gedan

Although the effects of persistent hypoxia have been well established, few studies have explored the community-level effects of short-duration and diel-cycling hypoxia, for example on predator–prey interactions. Consumer stress models predict that mobile predators will flee hypoxia, while prey stress models predict that sessile species, unable to avoid hypoxic water, will be more susceptible to predation. To test these hypotheses, we studied the effects of diel-cycling hypoxia on predation of the hooked mussel, Ischadium recurvum, and eastern oyster, Crassostrea virginica, in field experiments in two Chesapeake Bay, USA tributaries. We conducted a complementary laboratory experiment that tested the impact of short-duration hypoxia on predation of the two bivalve species by the ecologically and commercially important blue crab, Callinectes sapidus. Although we did not observe a significant effect of diel-cycling hypoxia on predation in the field, we did observe an effect of short-duration hypoxia in the laboratory. Callinectes sapidus exhibited depressed feeding rates and reduced preference for I. recurvum in hypoxic conditions. In both field and lab results, we observed a strong preference of predators for I. recurvum over C. virginica, indicating that the relatively understudied mussel I. recurvum merits greater consideration as a part of estuarine food webs.


2009 ◽  
Vol 4 (3) ◽  
Author(s):  
I. Venner ◽  
J. Husband ◽  
J. Noonan ◽  
A. Nelson ◽  
D. Waltrip

In response to rapid population growth as well as to address the nutrient reduction goals for the Chesapeake Bay established by the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Sanitation District (HRSD) initiated the York River Treatment Plant (YRTP) Expansion Phase 1 project. The existing YRTP is a conventional step-feed activated sludge plant and is rated for an average daily design flow of 57 million liters per day (MLD). This project proposes to expand the existing treatment capacity to 114 MLD and to reduce the nutrients discharged to the York River, a tributary for the Chesapeake Bay. In order to meet the effluent limits set by the VDEQ, a treatment upgrade to limit of technology (LOT) or enhanced nutrient removal (ENR) was required. Malcolm Pirnie worked with HRSD and the VDEQ to develop and evaluate ENR process alternatives to achieve the required effluent limits with the goal of determining the most reliable and cost effective alternative to achieve the aggressive nutrient reduction goals. This paper will highlight the key issues in determining the most desirable treatment process considering both economic and non-economic factors.


2021 ◽  
Vol 237 ◽  
pp. 105854
Author(s):  
Marvin M. Mace ◽  
Kathryn L. Doering ◽  
Michael J. Wilberg ◽  
Amy Larimer ◽  
Frank Marenghi ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 321
Author(s):  
Camila Mella ◽  
Michelle Quilaqueo ◽  
Rommy N. Zúñiga ◽  
Elizabeth Troncoso

The aim of this work was to study the impact of the methodology of in vitro gastric digestion (i.e., in terms of motility exerted and presence of gastric emptying) and gel structure on the degree of intestinal proteolysis and lipolysis of emulsion gels stabilized by whey protein isolate. Emulsions were prepared at pH 4.0 and 7.0 using two homogenization pressures (500 and 1000 bar) and then the emulsions were gelled by heat treatment. These gels were characterized in terms of texture analysis, and then were subjected to one of the following gastric digestion methods: in vitro mechanical gastric system (IMGS) or in vitro gastric digestion in a stirred beaker (SBg). After gastric digestion, the samples were subjected to in vitro intestinal digestion in a stirred beaker (SBi). Hardness, cohesiveness, and chewiness were significantly higher in gels at pH 7.0. The degree of proteolysis was higher in samples digested by IMGS–SBi (7–21%) than SBg–SBi (3–5%), regardless of the gel’s pH. For SBg–SBi, the degree of proteolysis was not affected by pH, but when operating the IMGS, higher hydrolysis values were obtained for gels at pH 7.0 (15–21%) than pH 4.0 (7–13%). Additionally, the percentage of free fatty acids (%FFA) released was reduced by 47.9% in samples digested in the IMGS–SBi. For the methodology SBg–SBi, the %FFA was not affected by the pH, but in the IMGS, higher values were obtained for gels at pH 4.0 (28–30%) than pH 7.0 (15–19%). Our findings demonstrate the importance of choosing representative methods to simulate food digestion in the human gastrointestinal tract and their subsequent impact on nutrient bioaccessibility.


Author(s):  
Jerelle A. Jesse ◽  
M. Victoria Agnew ◽  
Kohma Arai ◽  
C. Taylor Armstrong ◽  
Shannon M. Hood ◽  
...  

AbstractDiseases are important drivers of population and ecosystem dynamics. This review synthesizes the effects of infectious diseases on the population dynamics of nine species of marine organisms in the Chesapeake Bay. Diseases generally caused increases in mortality and decreases in growth and reproduction. Effects of diseases on eastern oyster (Crassostrea virginica) appear to be low in the 2000s compared to effects in the 1980s–1990s. However, the effects of disease were not well monitored for most of the diseases in marine organisms of the Chesapeake Bay, and few studies considered effects on growth and reproduction. Climate change and other anthropogenic effects are expected to alter host-pathogen dynamics, with diseases of some species expected to worsen under predicted future conditions (e.g., increased temperature). Additional study of disease prevalence, drivers of disease, and effects on population dynamics could improve fisheries management and forecasting of climate change effects on marine organisms in the Chesapeake Bay.


Parasitology ◽  
2003 ◽  
Vol 126 (4) ◽  
pp. 293-302 ◽  
Author(s):  
E. A. MACINTYRE ◽  
C. G. EARNHART ◽  
S. L. KAATTARI

Perkinsus marinus is responsible for a chronic disease (Dermo) of the Eastern oyster, Crassostrea virginica. In order to simulate the in vivo environment more closely, a chemically defined medium (JL-ODRP-3) was supplemented with tissue homogenate extracts or plasma from oysters possessing varying degrees of susceptibility to P. marinus infection. In media supplemented with extracts from highly susceptible oysters (C. virginica), P. marinus cells secreted elevated amounts of a set of low molecular weight serine proteases (LMP: 30–45 kDa) as assessed by enhanced digestion within gelatin-substrate SDS–PAGE gels. Oyster species of low susceptibility (C. gigas and C. ariakensis) did not exhibit this ability to upregulate P. marinus LMP expression. Oyster extract supplementation also led to pronounced changes in P. marinus cellular morphology, such that the cells were comparable to those observed within naturally infected oysters.


2009 ◽  
Vol 28 (2) ◽  
pp. 193-220 ◽  
Author(s):  
Roger Mann ◽  
Melissa Southworth ◽  
Juliana M. Harding ◽  
James A. Wesson

2016 ◽  
Author(s):  
Marianne T. Lund ◽  
Terje K. Berntsen ◽  
Bjørn H. Samset

Abstract. Despite recent improvements, significant uncertainties in global modeling of black carbon (BC) aerosols persist, posing important challenges for the design and evaluation of effective climate mitigation strategies targeted at BC emission reductions. Here we investigate the sensitivity of BC concentrations in the chemistry-transport model OsloCTM2 with the microphysical aerosol parameterization M7 (OsloCTM2-M7) to parameters controlling aerosol aging and scavenging. We focus on Arctic surface concentrations and remote region BC vertical profiles, and introduce a novel treatment of condensation of nitric acid on BC. The OsloCTM2-M7 underestimates annual averaged BC surface concentrations, with a mean normalized bias of −0.55. The seasonal cycle and magnitude of Arctic BC surface concentrations is improved compared to previous OsloCTM2 studies, but model-measurement discrepancies during spring remain. High-altitude BC over the Pacific is overestimated compared with measurements from the HIPPO campaigns. We find that a shorter global BC lifetime improves the agreement with HIPPO, in line with other recent studies. Several processes can achieve this, including allowing for convective scavenging of hydrophobic BC and reducing the amount of soluble material required for aging. Simultaneously, the concentrations in the Arctic are reduced, resulting in poorer agreement with measurements in part of the region. A first step towards inclusion of aging by nitrate in OsloCTM2-M7 is made by allowing for condensation of nitric acid on BC. This results in a faster aging and reduced lifetime, and in turn to a better agreement with the HIPPO measurements. On the other hand, model-measurement discrepancies in the Arctic are exacerbated. Work to further improve this parameterization is needed. The impact on global mean radiative forcing (RF) and surface temperature response (TS) in our experiments is estimated. Compared to the baseline, decreases in global mean direct RF on the order of 10–30 % of the total pre-industrial to present BC direct RF is estimated for the experiments that result in the largest changes in BC concentrations. We show that globally tuning parameters related to BC aging and scavenging can improve the representation of BC vertical profiles in the OsloCTM2-M7 compared with observations. Our results also show that such improvements can result from changes in several processes and often depend on assumptions about uncertain parameters such as the BC ice nucleating efficiency and the change in hygroscopicity with aging. It is also important to be aware of potential tradeoffs in model performance between different regions. Other important sources of uncertainty, particularly for Arctic BC, such as model resolution has not been investigated here. Our results underline the importance of more observations and experimental data to improve process understanding and thus further constrain models.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
S. Bruenner ◽  
D. Cichon ◽  
G. Eurin ◽  
P. Herrero Gómez ◽  
F. Jörg ◽  
...  

AbstractLong-lived radon daughters are a critical background source in experiments searching for low-energy rare events. Originating from radon in ambient air, radioactive polonium, bismuth and lead isotopes plate-out on materials that are later employed in the experiment. In this paper, we examine cleaning procedures for their capability to remove radon daughters from PTFE surfaces, a material often used in liquid xenon TPCs. We find a large difference between the removal efficiency obtained for the decay chains of $$^{222}$$ 222 Rn and $$^{220}$$ 220 Rn. This indicates that the plate-out mechanism has an effect on the cleaning success. While the long-lived $$^{222}$$ 222 Rn daughters can be reduced by a factor of  2, the removal of $$^{220}$$ 220 Rn daughters is up to 10 times more efficient depending on the treatment. Furthermore, the impact of a nitric acid based PTFE cleaning on the liquid xenon purity is investigated in a small-scale liquid xenon TPC.


Sign in / Sign up

Export Citation Format

Share Document