avalanche behavior
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Kevin W. C. Kwock ◽  
Changhwan Lee ◽  
Ayelet Teitelboim ◽  
Yawei Liu ◽  
Kaiyuan Yao ◽  
...  

2021 ◽  
Vol 118 (44) ◽  
pp. e2107306118
Author(s):  
Florie Giacona ◽  
Nicolas Eckert ◽  
Christophe Corona ◽  
Robin Mainieri ◽  
Samuel Morin ◽  
...  

Snow is highly sensitive to atmospheric warming. However, because of the lack of sufficiently long snow avalanche time series and statistical techniques capable of accounting for the numerous biases inherent to sparse and incomplete avalanche records, the evolution of process activity in a warming climate remains little known. Filling this gap requires innovative approaches that put avalanche activity into a long-term context. Here, we combine extensive historical records and Bayesian techniques to construct a 240-y chronicle of snow avalanching in the Vosges Mountains (France). We show evidence that the transition from the late Little Ice Age to the early twentieth century (i.e., 1850 to 1920 CE) was not only characterized by local winter warming in the order of +1.35 °C but that this warming also resulted in a more than sevenfold reduction in yearly avalanche numbers, a severe shrinkage of avalanche size, and shorter avalanche seasons as well as in a reduction of the extent of avalanche-prone terrain. Using a substantial corpus of snow and climate proxy sources, we explain this abrupt shift with increasingly scarcer snow conditions with the low-to-medium elevations of the Vosges Mountains (600 to 1,200 m above sea level [a.s.l.]). As a result, avalanches migrated upslope, with only a relict activity persisting at the highest elevations (release areas >1,200 m a.s.l.). This abrupt, unambiguous response of snow avalanche activity to warming provides valuable information to anticipate likely changes in avalanche behavior in higher mountain environments under ongoing and future warming.


2021 ◽  
pp. 100102
Author(s):  
Marcin Szalkowski ◽  
Magdalena Dudek ◽  
Zuzanna Korczak ◽  
Changhwan Lee ◽  
Łukasz Marciniak ◽  
...  

2019 ◽  
Vol 2019 (0) ◽  
pp. OS0714
Author(s):  
Go MURASAWA ◽  
Tadaaki SATAKE ◽  
Atsushi TAKAHASHI ◽  
Yuki IKEDA

Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Terri Cook

High-resolution radar images from Switzerland’s experimental test site show that snow temperature is a key factor in classifying avalanche behavior.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
V. Brajuskovic ◽  
F. Barrows ◽  
C. Phatak ◽  
A. K. Petford-Long

Author(s):  
Christophe Ancey

Avalanches have long been a natural threat to humans in mountainous areas. At the end of the Middle Ages, the population in Europe experienced significant growth, leading to an intensive exploitation of upper valleys. At almost the same time, Europe’s climate cooled down considerably and severe winters became more common. In the Alps, several villages were partly destroyed by avalanches, forcing inhabitants to develop the first mitigation strategies against the threat. By the late 19th century, the development of central administrations led to the creation of national forestry departments in each alpine country, principally to tackle the dangers posed by avalanches. As a result, forest engineers conceived not only the science of avalanches but also the first large-scale techniques to alleviate avalanche risks (such as reforestation). However, with the steady growth of transport, industry, tourism, and urbanization in high-altitude areas, these earlier measures soon reached their limits. A new impetus was then given to better forecasting avalanche activity and predicting the destructive potential of extreme avalanches. Avalanche zoning, snowfall forecasts, avalanche-dynamics models, and new protection systems for the protection of structures and inhabitants have become increasingly more common since World War II. With the advent of personal computers and the increasing sophistication of computational resources, it has become easier to predict the behavior of avalanches and protect threatened areas accordingly. The success of this research and the protection policies implemented since World War II are reflected in the drastic reduction in the number of disasters affecting dwellings in the Alps (most deaths by avalanche now occur during recreational activities). Significant progress has been made since the 1980s, leading to a better understanding of avalanche behavior and the mediation of associated risks. Yet we should not assume that this progress is steady or that our capacity to control such hazards is more advanced than it was two decades ago. Efforts to predict avalanches contrast with work in other sciences such as meteorology, for which forecasts have become increasingly more reliable with advancements in computational power. Explaining the difference is simple: in meteorology, the material is air, a substance whose behavior is well known. The main difficulty lies in the computation of enormous volumes of air encountering various flow and temperature conditions. For avalanches, the material is snow, a subtle mixture of water (in different forms) and air, whose behavior is remarkably complex. Modern models of avalanche dynamics are able to predict this behavior with varying degrees of success.


2014 ◽  
Vol 568 (2) ◽  
pp. 022004
Author(s):  
P W Adams ◽  
J C Prestigiacomo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document