synthetic ligand
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 38)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Mikhail G Akimov ◽  
Natalia M Gretskaya ◽  
Polina V Dudina ◽  
Galina Sherstyanykh ◽  
Galina N Zinchenko ◽  
...  

The objective of the project is to establish the mechanisms of multidirectional signal transmission through the same G-protein coupled receptor GPR55. Using the CRISPR-Cas9 system, clones of the MDA-MB-231 line knockout for the GPR55 (3 clones) and CB2 (CNR2 - 6 clones) receptor genes were obtained. On clones of the MDA-MB-231 line with a knockout CB2 receptor, the cytotoxic activity of the pro-apoptotic ligand docosahexaenoyldopamine (DHA-DA) did not change or slightly increased, while the pro-proliferative activity of the most active synthetic ligand of the GPR55 receptor (ML-184) completely disappeared. On the original line MDA-MB-231, the stimulatory effect of ML-184 is removed by the CB2 receptor blocker, but not by GPR55. At the same time, the stimulating effect of ML-184 is practically not manifested on cell lines knockout at the GPR55 receptor. Thus, it can be confidently assumed that when proliferation is stimulated with the participation of the GPR55 receptor, a signal is transmitted from the CB2 receptor to the GPR55 receptor due to the formation of a heterodimer. GPR18 and TRPV1 receptors are additionally involved in the implementation of the cytotoxic effect of DHA-DA, while the CB1 receptor is not involved. In the implementation of the cytotoxic action of DHA-DA, the predominant participation of one of the Ga subunits was not found, but the Ga13 subunit plays a decisive role in the implementation of the proproliferative action. The Gaq subunit is also important, although to a lesser extent than Ga13.


ACS Nano ◽  
2021 ◽  
Author(s):  
Samantha M. Harvey ◽  
Daniel W. Houck ◽  
Wen Liu ◽  
Yuzi Liu ◽  
David J. Gosztola ◽  
...  

2021 ◽  
Author(s):  
Brandon J Bongers ◽  
Marina Gorostiola González ◽  
Xuesong Wang ◽  
Herman WT van Vlijmen ◽  
Willem Jespers ◽  
...  

G protein-coupled receptors (GPCRs) form the most frequently exploited drug target family, moreover they are often found mutated in cancer. Here we used an aggregated dataset of mutations found in cancer patient samples derived from the Genomic Data Commons and compared it to the natural human variance as exemplified by data from the 1000 Genomes project. While the location of these mutations across the protein domains did not differ significantly in the two datasets, a mutation enrichment was observed in cancer patients among conserved residues in GPCRs such as the 'DRY' motif. We subsequently created a ranking of high scoring GPCRs, using a multi-objective approach (Pareto Front Ranking). The validity of our approach was confirmed by re-discovery of established cancer targets such as the LPA and mGlu receptor families, and we identified novel GPCRs that had not been directly linked to cancer before such as the P2Y Receptor 10 (P2RY10). As a proof of concept, we projected the structurally investigated mutations in the crystal structure of the C-C Chemokine (CCR) 5 receptor, one of the high-ranking GPCRs previously linked to cancer. Several positions were pinpointed that relate to either structural integrity or endogenous and synthetic ligand binding, providing a rationale to their mechanism of influence in cancer. In conclusion, this study identifies a list of GPCRs that are prioritized for experimental follow up characterization to elucidate their role in cancer. The computational approach here described can be adapted to investigate the roles in cancer of any protein family.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 661
Author(s):  
Feng-Zhen Meng ◽  
Jin-Biao Liu ◽  
Xu Wang ◽  
Peng Wang ◽  
Wen-Hui Hu ◽  
...  

The Toll-like receptor (TLR) 7 is a viral sensor for detecting single-stranded ribonucleic acid (ssRNA), the activation of which can induce intracellular innate immunity against viral infections. Imiquimod, a synthetic ligand for TLR7, has been successfully used for the topical treatment of genital/perianal warts in immunocompetent individuals. We studied the effect of imiquimod on the human immunodeficiency virus (HIV) infection of primary human macrophages and demonstrated that the treatment of cells with imiquimod effectively inhibited infection with multiple strains (Bal, YU2, and Jago) of HIV. This anti-HIV activity of imiquimod was the most potent when macrophages were treated prior to infection. Infection of macrophages with pseudotyped HIV NL4-3-∆Env-eGFP-Bal showed that imiquimod could block the viral entry. Further mechanistic studies revealed that while imiquimod had little effect on the interferons (IFNs) expression, its treatment of macrophages resulted in the increased production of the CC chemokines (human macrophage inflammatory protein-1 alpha (MIP-1α), MIP-1β, and upon activation regulated normal T cells expressed and secreted (RANTES)), the natural ligands of HIV entry co-receptor CCR5, and decreased the expression of CD4 and CCR5. The addition of the antibodies against the CC chemokines to macrophage cultures could block imiquimod-mediated HIV inhibition. These findings provide experimental evidence to support the notion that TLR7 participates in the intracellular immunity against HIV in macrophages, suggesting the further clinical evaluation of imiquimod for its additional benefit of treating genital/perianal warts in people infected with HIV.


2021 ◽  
Author(s):  
Jaya Krishna Koneru ◽  
Suman Sinha ◽  
Jagannath Mondal

The recognition of carbohydrates by lectins play key roles in diverse cellular processes such as cellular adhesion, proliferation and apoptosis which makes it a promising therapeutic target against cancers. One of the most functionally active lectins, galectin-3 is distinctively known for its specific binding affinity towards β-galactoside. Despite the prevalence of high-resolution crystallographic structures, the mechanistic basis and the molecular determinants of the sugar recognition process by galectin-3 are currently elusive. Here we address this question by capturing the complete dynamical binding process of human galectin-3 with its native ligand N-acetyllactosamine (LacNAc) and one of its synthetic derivatives by unbiased Molecular Dynamics simulation. In our simulations, both the natural ligand LacNAc and its synthetic derivative, initially solvated in water, diffuse around the protein and eventually recognise the designated binding site at the S-side of galectin-3, in crystallographic precision and identifies key metastable intermediate ligand-states around the galectin on their course to eventual binding. The simulations highlight that the origin of the experimentally observed multi-fold efficacy of synthetically designed ligand-derivative over its native natural ligand LacNAc lies in the derivative's relatively longer residence time in the bound pocket. A kinetic analysis demonstrates that the LacNAc-derivative would be more resilient compared to the parent ligand against unbinding from the protein binding site. In particular, the analysis identifies that interactions of the binding pocket residues Trp181, Arg144 and Arg162 with the tetrafuorophenyl ring of the derivative as the key determinant for the synthetic ligand to latch into the pocket.


2021 ◽  
Author(s):  
LAMEES HEGAZY ◽  
Aurore-Cecile Valfort ◽  
Thomas P. Burris ◽  
Bahaa Elgendy

REV-ERBα is a nuclear hormone receptor that plays important role in the regulation of many physiological processes such as circadian clock regulation, inflammation, and metabolism. Despite its importance, few chemical tools are available to study this receptor. In addition, there is no available X-ray crystal structures of REV-ERB bound with synthetic ligands, hampering the development of targeted therapeutics. SR8278 is the only identified synthetic antagonist of REV-ERB. We have performed Gaussian accelerated molecular dynamics (GaMD) simulations to sample the binding pathway of SR8278 and associated conformational changes to REV-ERBα. The simulations revealed a novel and more energetically favorable conformational state than the starting conformation. The new conformation allows ligand binding to the orthosteric binding site in a specific orientation. This state is reached after a tryptophan (Trp436) rotameric switch coupled with H3-H6 distance change. We used the newly identified GaMD conformational state in structure-based virtual screening of one million compounds library which led to the identification of novel REV-ERBα antagonist. This study is the first that demonstrates a synthetic ligand binding pathway to REV-ERBα, which provided important insights into the REV-ERBα functional mechanism and lead to the discovery of novel REV-ERBα antagonists. This study further emphasizes the power of computational chemistry methods in advancing drug discovery research.


Sign in / Sign up

Export Citation Format

Share Document