Short Persistence and Vector Susceptibility to Ficam 80WP (bendiocarb active ingredient) During Pilot Application of Indoor Residual Spraying in Burkina Faso, West Africa

Author(s):  
Aristide Sawdetuo Hien ◽  
Dieudonné Diloma Soma ◽  
Fabrice Anyirekun Somé ◽  
Moussa Namountougou ◽  
Serge Bèwadéyir Poda ◽  
...  

Abstract Indoor residual spraying (IRS) was applied in addition to the use of long-lasting insecticidal nets in the South West in Burkina Faso, where Anopheles gambiae s.l. the major malaria vector was resistant to pyrethroids. This study was designed to evaluate the efficacy and residual life of bendiocarb (active ingredient) used for spraying on different wall surfaces (mud and cement). Cone bioassays were done monthly with the susceptible An. gambiae ‘Kisumu’ strain and the local wild populations to determine the duration for which insecticide was effective in killing mosquitoes. Cone bioassay data showed low efficacy and short persistence of bendiocarb applied on mud and cement walls, lasting 2 mo with the susceptible insectary strain and less than 1 mo with An. gambiae wild populations. In addition, WHO tube assays confirmed resistance of An. gambiae wild populations to 0.1% bendiocarb with mortality rates less than 80% in both study sites (sprayed and unsprayed sites). The pilot study of IRS with bendiocarb showed that the residual efficacy of bendiocarb was very short, and resistance to bendiocarb was confirmed in wild populations of An. gambiae s.l. Therefore, Ficam 80 WP was not suitable for IRS in this area due to the short residual duration related mainly to vectors resistance to bendiocarb. While waiting for innovative malaria control tool, alternative insecticide (organophosphate or neonicotinoid classes) or combinations of insecticides have to be used for insecticide resistance management in Burkina Faso.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dieudonné Diloma Soma ◽  
Barnabas Zogo ◽  
Domonbabele François de Sales Hien ◽  
Aristide Sawdetuo Hien ◽  
Didier Alexandre Kaboré ◽  
...  

Abstract Background The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. Methods We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population. Results An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55–1.12], Tukey’s test p-value = 0.19). Conclusions If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. Insecticides with new chemistries are urgently needed. Broflanilide is a newly discovered insecticide under consideration. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON T500) for IRS on mud and cement wall substrates in laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, broflanilide WP-treated substrates killed > 80% of susceptible and pyrethroid-resistant An. gambiae sl for 6–14 months. At application rates of 100 mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant An. gambiae sl entering experimental huts in Covè, Benin treated with VECTRON T500 was similar to pirimiphos-methyl CS (57–66% vs. 56%, P > 0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on VECTRON T500 treated hut walls remained > 80%. IRS with broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and could thus be a crucial addition to the current portfolio of IRS insecticides.


2018 ◽  
Vol 2 ◽  
pp. 32 ◽  
Author(s):  
Su Yun Kang ◽  
Katherine E. Battle ◽  
Harry S. Gibson ◽  
Laura V. Cooper ◽  
Kilama Maxwell ◽  
...  

Background: Heterogeneity in malaria transmission has household, temporal, and spatial components. These factors are relevant for improving the efficiency of malaria control by targeting heterogeneity. To quantify variation, we analyzed mosquito counts from entomological surveillance conducted at three study sites in Uganda that varied in malaria transmission intensity. Mosquito biting or exposure is a risk factor for malaria transmission. Methods: Using a Bayesian zero-inflated negative binomial model, validated via a comprehensive simulation study, we quantified household differences in malaria vector density and examined its spatial distribution. We introduced a novel approach for identifying changes in vector abundance hotspots over time by computing the Getis-Ord statistic on ratios of household biting propensities for different scenarios. We also explored the association of household biting propensities with housing and environmental covariates. Results: In each site, there was evidence for hot and cold spots of vector abundance, and spatial patterns associated with urbanicity, elevation, or other environmental covariates. We found some differences in the hotspots in rainy vs. dry seasons or before vs. after the application of control interventions. Housing quality explained a portion of the variation among households in mosquito counts. Conclusion: This work provided an improved understanding of heterogeneity in malaria vector density at the three study sites in Uganda and offered a valuable opportunity for assessing whether interventions could be spatially targeted to be aimed at abundance hotspots which may increase malaria risk. Indoor residual spraying was shown to be a successful measure of vector control interventions in Tororo, Uganda.  Cement walls, brick floors, closed eaves, screened airbricks, and tiled roofs were features of a house that had shown reduction of household biting propensity. Improvements in house quality should be recommended as a supplementary measure for malaria control reducing risk of infection.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mariam Barro ◽  
Abalo Itolou Kassankogno ◽  
Issa Wonni ◽  
Drissa SEREME ◽  
Irénée SOMDA ◽  
...  

Multiple constraints affect rice yields and global production in West Africa. Among these constraints are viral, bacterial and fungal pathogens. We aimed to describe the spatiotemporal patterns of occurrence and incidence of multiple rice diseases in farmers’ fields in contrasting rice growing systems in western Burkina Faso. For this purpose, we selected a set of three pairs of sites, each comprising an irrigated area and a neighboring rainfed lowland, and studied them over four consecutive years. We first performed interviews with the rice farmers to better characterize the management practices at the different sites. This study revealed that the transplanting of rice and the possibility of growing rice twice a year are restricted to irrigated areas, while other practices, such as the use of registered rice cultivars, fertilization and pesticides, are not specific but differ between the two rice growing systems. Then, we performed symptom observations at these study sites to monitor the following four diseases: yellow mottle disease, Bacterial Leaf Streak (BLS), rice leaf blast and brown spot. The infection rates were found to be higher in irrigated areas than in rainfed lowlands, both when analyzing all observed symptoms together (any of the four diseases) and when specifically considering each of the two diseases: BLS and rice leaf blast. Brown spot was particularly prevalent in all six study sites, while yellow mottle disease was particularly structured geographically. Various diseases were frequently found together in the same field (co-occurrence) or even on the same plant (coinfection), especially in irrigated areas.


Author(s):  
Drissa Boro ◽  
Ky Thierry ◽  
Florent P. Kieno ◽  
Joseph Bathiebo

In order to estimate the power output of a wind turbine, optimise its sizing and forecast the economic rate of return and risks of a wind energy project, wind speed distribution modelling is crucial. For which, Weibull distribution is considered as one of the most acceptable model. However, this distribution does not fit certain wind speed regimes. The objective of this study is to model the frequency distribution of the three-hourly wind speed at ten sites of Burkina Faso. In this context, we compared the accuracy of five distributions (Weibull, Hybrid Weibull, Rayleigh, Gamma and inverse Gaussian) which gave satisfactory results in this field. The maximum likelihood method was used to fit the distributions to the measured data. According to the statistical analysis tools (the coefficient of determination and the root mean square error), it was found that the Weibull distribution is most suited to the Bobo, Dédougou, Ouaga and Ouahigouya sites. On the other hand, for the sites of Bogandé, Fada and Po, the hybrid Weibull distribution is the most suitable one. As to the inverse Gaussian distribution, it is the most suitable for the Boromo, Dori and Gaoua sites. In addition, the analysis focused on comparing the mean absolute error of the annual wind power density estimation using the distributions examined. The Hybrid Weibull distribution was found to have a minimal mean absolute error for most study sites.


2019 ◽  
Author(s):  
D.D Soma ◽  
B Zogo ◽  
P Taconet ◽  
A Somé ◽  
S Coulibaly ◽  
...  

AbstractBackgroundTo sustain the efficacy of malaria vector control, the World Health Organization (WHO) recommends the combination of effective tools. Before designing and implementing additional strategies in any setting, it is critical to monitor or predict when and where transmission occurs. However, to date, very few studies have quantified the behavioural interactions between humans and Anopheles vectors. Here, we characterized residual transmission in a rural area of Burkina Faso where long lasting insecticidal nets (LLIN) are widely used.MethodsWe analysed data on both human and malaria vectors behaviours from 27 villages to measure hourly human exposure to vector bites in dry and rainy seasons using mathematical models. We estimated the protective efficacy of LLINs and characterised where (indoors vs. outdoors) and when both LLIN users and non-users were exposed to vector bites.ResultsThe percentage of the population who declared sleeping under a LLIN the previous night was very high regardless of the season, with an average LLIN use ranging from 92.43% to 99.89%. The use of LLIN provided > 80% protection against exposure to vector bites. The proportion of exposure for LLIN users was 29-57% after 05:00 and 0.05-12 % before 20:00. More than 80% of exposure occurred indoors for LLIN users and the estimate reached 90% for children under five years old in the dry cold season.ConclusionsThis study supports the current use of LLIN as a primary malaria vector control tool. It also emphasises the need to complement LLIN with indoor-implemented measures such as indoor residual spraying (IRS) and/or house improvement to effectively combat malaria in the rural area of Diébougou. Furthermore, malaria elimination programmes would also require strategies that target outdoor biting vectors to be successful in the area.


2020 ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. A more diversified portfolio of IRS insecticides is required; insecticides with new chemistries which can provide improved and prolonged control of insecticide-resistant vector populations are urgently needed. Broflanilide is a newly discovered insecticide being considered for malaria vector control. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON™ T500) for IRS on mud and cement wall substrates in WHO laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic® 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, mortality of susceptible and pyrethroid-resistant A. gambiae s.l. with broflanilide WP treated substrates was >80% for 6-14 months. At application rates of 100mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant A. gambiae s.l. entering treated experimental huts in Covè, Benin was 57%-66% with broflanilide WP and did not differ significantly from pirimiphos-methyl CS (57-66% vs. 56%, P>0.05). Mosquito mortality did not differ between the two application rates and local wall substrate-types tested (P>0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on broflanilide WP treated hut walls remained >80% for both susceptible and resistant strains of A. gambiae s.l.. Broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and would thus be a crucial addition to the current portfolio of IRS insecticides.One Sentence SummaryVECTRON™ T500, a new wettable powder formulation of broflanilide developed for indoor residual spraying, showed high and prolonged activity against wild pyrethroid-resistant malaria vectors, on local wall substrates, in laboratory bioassays and experimental household settings in Benin.


2020 ◽  
Author(s):  
Sawdetuo Aristide HIEN ◽  
Dieudonné Diloma Soma ◽  
Simon Pengwende Sawadogo ◽  
Serge Bèwadéyir Poda ◽  
Moussa Namountougou ◽  
...  

Abstract Background The fight against vector is essential in malaria prevention strategies in several endemic countries in Africa. In Burkina Faso, malaria transmission is seasonal in most parts of country, so a single round of spraying should provide effective protection against malaria, provided the insecticide remains effective over the entire malaria transmission season. The outcomes of indoor residual spraying towards curtailing malaria transmission are firstly to decrease the life span of vector mosquitoes and also to reduce the malaria vectors density. Methods CDC light trap and early morning collections by pyrethrum spray catches were performed monthly to determine the change in malaria vector indices in sprayed (Diebougou) and unsprayed sites (Dano). The female’s malaria vectors collected by both methods were used to determine their blood feeding, biting and sporozoites rate and malaria transmission risk estimated by entomological inoculation rate. Results Anopheles gambiae complex composed to Anopheles gambiae, Anopheles coluzzii and Anopheles arabiensis were present throughout the transmission season, but An. gambiae was the predominant species collected (P =0.0005), comprising 88% of the total collected and the most infected species. Malaria vectors densities were significantly lower in sprayed villages (n=4,303) compared with unsprayed villages (n=12,569) during post-spraying period (P = 0.0012). In addition, mean human biting rate of An. gambiae sl and An . funestus ss were significantly lower in sprayed areas compared to unsprayed areas (P<0.05). Overall, malaria vector transmission risk was significant lower in villages which received IRS (P=0.0001) whatever the malaria vectors species ( An. gambiae sl and An. funestus ss). Conclusions The results showed that in the sprayed area (Diebougou), vector densities, human biting rates and malaria transmission risks were very lower than unsprayed areas (Dano). The findings also showed a change in vector behavior especially within An. funestus which became more zoophagic following IRS. The indoor residual spraying could be recommanded as control tool in areas where malaria transmission occured a given period of year.


Author(s):  
I. A. Atting ◽  
N. D. Ekpo ◽  
M. E. Akpan ◽  
B. E. Bassey ◽  
M. J. Asuquo ◽  
...  

Development of resistance by different malaria vector populations to insecticides has become a big threat to malaria vector elimination. This study evaluated the susceptibility of Anopheles mosquito populations in Akwa Ibom State, Nigeria to permethrin (0.75%), deltamethrin (0.5%), lambdacyhalothrin (0.5%), alphacypermethrin (0.75%), Dichlorodiphenyltrichloethane (DDT), propoxur, bendiocarb and pirimiphosmethylin in World Health Organization (WHO) test tubes following standard protocols. The mosquitoes were obtained as aquatic forms and reared under laboratory conditions to adults. The adults were subjected to WHO susceptibility bioassays following standard procedures. Malaria vectors across the study sites were resistant to permethrin, deltamethrin, lambdacyhalothrin and alphacypermethrin insecticides. Full susceptibility to propoxur and bendiocarb was recorded across the sites. Full susceptibility to pirimiphosmethyl was recorded in populations from three sites. Nevertheless, population of the malaria vectors collected from Oron was resistant to pirimiphosmethyl. KDT50 and KDT95 estimated for each insecticide using a log-time probit model revealed that knockdown was more rapid for deltamethrin, lambdacyhalothrin, alphacypermethrin, propoxur, bendiocarb and pirimiphosmethyl than for DDT and permethrin  across the study sites. Morphological identification of all the mosquito samples used revealed that they were female Anopheles gambiae s.l. Sustained susceptibility of malaria vectors to pyrethriod is necessary for successful malaria control with insecticide treated nets and Indoor Residual Spraying (IRS). Emergence of focal points with insecticide resistance gives serious concern especially with the scale-up in distribution of pyrethriod treated nets to these areas. This may increase selection pressures due to overexposure. Further study to identify the exact resistance mechanism(s) of malaria vectors from these sites is recommended.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Zalalham Al-Koleeby ◽  
Ahmed El Aboudi ◽  
Mithaq Assada ◽  
Mohamed Al-Hadi ◽  
Mohammed Abdalr Ahman ◽  
...  

Control of malaria vectors in Yemen relies on both indoor residual spraying using carbamate (bendiocarb) and long-lasting pyrethroids-treated nets. This paper reports the results of studies conducted to monitor the insecticide resistance of the main malaria vector, Anopheles arabiensis, to the insecticides currently used in the vector control in four different locations. Susceptibility tests were performed following the WHO test procedures. Two pyrethroids (lambda-cyhalothrin 0.05% and deltamethrin 0.05%) and one carbamate (bendiocarb 0.1%) were tested at diagnostic doses (DD). The five-fold DD of lambda-cyhalothrin and deltamethrin (0.25%) were also used to yield information on the intensity of resistance. Besides, tests with synergists were performed to assess the involvement of detoxifying enzyme in the phenotypic resistance of the populations of An. arabiensis to pyrethroids. The results of the performed susceptibility bioassay showed that the vector is susceptible to bendiocarb and resistant to lambda-cyhalothrin and deltamethrin in the four studied areas. The pyrethroids resistance is solely metabolic. This information could help policy-makers to plan insecticide resistance management. Bendiocarb is still an effective insecticide in the form of IRS. Concerning LLINS, it would be interesting to assess their effectiveness, combining a pyrethroid with PBO for the control of the pyrethroid-resistant malaria vector.


Sign in / Sign up

Export Citation Format

Share Document