scholarly journals Foamy Virus Integration

2004 ◽  
Vol 78 (5) ◽  
pp. 2472-2477 ◽  
Author(s):  
Thomas Juretzek ◽  
Teresa Holm ◽  
Kathleen Gärtner ◽  
Sylvia Kanzler ◽  
Dirk Lindemann ◽  
...  

ABSTRACT It had been suggested that during integration of spumaretroviruses (foamy viruses) the right (U5) end of the cDNA is processed, while the left (U3) remains uncleaved. We confirmed this hypothesis by sequencing two-long terminal repeat (LTR) circle junctions of unintegrated DNA. Based on an infectious foamy virus molecular clone, a set of constructs harboring mutations at the 5′ end of the U3 region in the 3′ LTR was analyzed for particle export, reverse transcription, and replication. Following transient transfection some mutants were severely impaired in generating infectious virus, while others replicated almost like the wild type. The replication competence of the mutants was unrelated to the cleavability of the newly created U3 end. This became obvious with two mutants both belonging to the high-titer type. One mutant containing a dinucleotide artificially transferred from the right to the left end was trimmed upon integration, while another one with an unrelated dinucleotide in that place was not. The latter construct in particular showed that the canonical TG motif at the beginning of the provirus is not essential for foamy virus integration.

1999 ◽  
Vol 73 (4) ◽  
pp. 2613-2621 ◽  
Author(s):  
Thomas Pietschmann ◽  
Martin Heinkelein ◽  
Martina Heldmann ◽  
Hanswalter Zentgraf ◽  
Axel Rethwilm ◽  
...  

ABSTRACT Unlike other subclasses of the Retroviridae theSpumavirinae, its prototype member being the so-called human foamy virus (HFV), require the expression of the envelope (Env) glycoprotein for viral particle egress. Both the murine leukemia virus (MuLV) Env and the vesicular stomatitis virus G protein, which efficiently pseudotype other retrovirus capsids, were not able to support export of HFV particles. Analysis of deletion and point mutants of the HFV Env protein revealed that the HFV Env cytoplasmic domain (CyD) is dispensable for HFV particle envelopment, release, and infectivity, whereas deletion of the membrane-spanning-domain (MSD) led to an accumulation of naked capsids in the cytoplasm. Neither alternative membrane association of HFV Env deletion mutants lacking the MSD and CyD via phosphoglycolipid anchor nor domain swapping mutants, with the MSD or CyD of MuLV Env and VSV-G exchanged against the corresponding HFV domains, could restore particle envelopment and the release defect of pseudotypes. However, replacement of the HFV MSD with that of MuLV led to budding of HFV capsids at the intracellular membranes. These virions were of apparently wild-type morphology but were not naturally released into the supernatant and they were noninfectious.


2021 ◽  
pp. 074873042199811
Author(s):  
Franziska Ruf ◽  
Oliver Mitesser ◽  
Simon Tii Mungwa ◽  
Melanie Horn ◽  
Dirk Rieger ◽  
...  

The adaptive significance of adjusting behavioral activities to the right time of the day seems obvious. Laboratory studies implicated an important role of circadian clocks in behavioral timing and rhythmicity. Yet, recent studies on clock-mutant animals questioned this importance under more naturalistic settings, as various clock mutants showed nearly normal diel activity rhythms under seminatural zeitgeber conditions. We here report evidence that proper timing of eclosion, a vital behavior of the fruit fly Drosophila melanogaster, requires a functional molecular clock under quasi-natural conditions. In contrast to wild-type flies, period01 mutants with a defective molecular clock showed impaired rhythmicity and gating in a temperate environment even in the presence of a full complement of abiotic zeitgebers. Although period01 mutants still eclosed during a certain time window during the day, this time window was much broader and loosely defined, and rhythmicity was lower or lost as classified by various statistical measures. Moreover, peak eclosion time became more susceptible to variable day-to-day changes of light. In contrast, flies with impaired peptidergic interclock signaling ( Pdf01 and han5304 PDF receptor mutants) eclosed mostly rhythmically with normal gate sizes, similar to wild-type controls. Our results suggest that the presence of natural zeitgebers is not sufficient, and a functional molecular clock is required to induce stable temporal eclosion patterns in flies under temperate conditions with considerable day-to-day variation in light intensity and temperature. Temperate zeitgebers are, however, sufficient to functionally rescue a loss of PDF-mediated clock-internal and -output signaling


Genetics ◽  
1976 ◽  
Vol 82 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Jerry F Feldman ◽  
Marian N Hoyle

ABSTRACT A fourth mutant of Neurospora crassa, designated frq-4, has been isolated in which the period length of the circadian conidiation rhythm is shortened to 19.3 ± 0.3 hours. This mutant is tightly linked to the three previously isolated frq mutants, and all four map to the right arm of linkage group VII about 10 map units from the centromere. Complementation tests suggest, but do not prove, that all four mutations are allelic, since each of the four mutants is co-dominant with the frq  + allele—i.e., heterokaryons have period lengths intermediate between the mutant and wild-type—and since heterokaryons between pairs of mutants also have period lengths intermediate between those of the two mutants.


2009 ◽  
Vol 90 (2) ◽  
pp. 481-487 ◽  
Author(s):  
Tatiana Wiktorowicz ◽  
Katrin Peters ◽  
Nicole Armbruster ◽  
Andre F. Steinert ◽  
Axel Rethwilm

In contrast to other retroviruses, foamy viruses (FVs) generate their Pol protein precursor independently of the Gag protein from a spliced mRNA. The exact mechanism of Pol protein incorporation into the viral capsid is poorly understood. Previously, we showed that Pol encapsidation critically depends on the packaging of (pre-) genomic RNA and identified two distinct signals within the cis-acting sequences (CASI and CASII), Pol encapsidation sequences (PESI and PESII), which are required for Pol capsid incorporation. Here, we investigated whether the presence of PESI and PESII in an FV vector is sufficient for Pol encapsidation and whether the rather extended CASII element can be shortened without loss of functionality. Our results indicate that (i) the presence of PESI and II are not sufficient for Pol encapsidation, (ii) prototype FV vectors with a shortened CASII element retain Pol incorporation and full functionality, in particular upon transducing fibroblasts and primary human mesenchymal stem cells, (iii) the presence of the central poly purine tract significantly increased the transduction rates of FV vectors and (iv) Pol encapsidation and RNA packaging can be clearly separated. In essence, we designed a new FV vector that bears approximately 850 bp less of CAS than previously established vectors and is fully functional when analysed to transduce cell lines and primary human cells.


2005 ◽  
Vol 79 (11) ◽  
pp. 7005-7013 ◽  
Author(s):  
Katrin Peters ◽  
Tatiana Wiktorowicz ◽  
Martin Heinkelein ◽  
Axel Rethwilm

ABSTRACT Foamy viruses (FVs) generate their Pol protein precursor molecule independently of the Gag protein from a spliced mRNA. This mode of expression raises the question of the mechanism of Pol protein incorporation into the viral particle (capsid). We previously showed that the packaging of (pre)genomic RNA is essential for Pol encapsidation (M. Heinkelein, C. Leurs, M. Rammling, K. Peters, H. Hanenberg, and A. Rethwilm, J. Virol. 76:10069-10073, 2002). Here, we demonstrate that distinct sequences in the RNA, which we termed Pol encapsidation sequences (PES), are required to incorporate Pol protein into the FV capsid. Two PES were found, which are contained in the previously identified cis-acting sequences necessary to transfer an FV vector. One PES is located in the U5 region of the 5′ long terminal repeat and one at the 3′ end of the pol gene region. Neither element has any significant effect on RNA packaging. However, deletion of either PES resulted in a significant reduction in Pol encapsidation. On the protein level, we show that only the Pol precursor, but not the individual reverse transcriptase (RT) and integrase (IN) subunits, is incorporated into FV particles. However, enzymatic activities of the protease (PR), RT, or IN are not required. Our results strengthen the view that in FVs, (pre)genomic RNA functions as a bridging molecule between Gag and Pol precursor proteins.


1984 ◽  
Vol 4 (2) ◽  
pp. 302-309
Author(s):  
D Hanahan ◽  
Y Gluzman

A variant of the adenovirus type 5 genome which lacks EcoRI sites has been cloned in a bacterial plasmid after the addition of EcoRI oligonucleotide linkers to its ends. Closed circular forms of the recombinant viral genome were not infectious upon their introduction into permissive eucaryotic cells. The linear genome released by digestion of the 39-kilobase recombinant plasmid (pXAd) with EcoRI produced infectious virus at about 5% of the level of wild-type controls. The viruses which arose were indistinguishable from the parental strain, and the normal termini of the viral genome had been restored. Marker rescue experiments demonstrate that provision of a DNA fragment with a normal viral end improves infectivity. When a small fragment carrying a wild-type left end (the 0 to 2.6% ClaI-B fragment) was ligated to ClaI-linearized pXAd, virus was produced with efficiencies comparable to a similar reconstitution of the two ClaI fragments of the wild-type genome. These viruses stably carry the left-end fragment at both ends, leaving the normal right end embedded in 950 base pairs of DNA. The embedded right origin is inactive. The consensus of the analyses reported here is that a free end is a necessary configuration for the sequences which make up the adenovirus origin of replication.


Blood ◽  
2006 ◽  
Vol 107 (7) ◽  
pp. 2976-2983 ◽  
Author(s):  
Heyu Ni ◽  
Pingguo Chen ◽  
Christopher M. Spring ◽  
Ebrahim Sayeh ◽  
John W. Semple ◽  
...  

AbstractFetal and neonatal alloimmune thrombo cytopenia (FNAITP) is a life-threatening bleeding disorder caused by maternal antibodies directed against fetal platelet antigens. The immunoreactive epitopes in FNAITP are primarily located in the extracellular regions of the platelet glycoprotein IIIa (β3 integrin). Here we have established a novel animal model of FNAITP using β3 integrin–deficient (β3-/-) mice. We demonstrated first that these mice are immunoresponsive to β3 integrin; β3-/- mice transfused with wild-type platelets generated specific anti–β3 antibodies which were able to induce thrombocytopenia in wild-type mice. Subsequently, β3-/- female mice (both naive and immunized) were bred with wild-type male mice to recapitulate the features of FNAITP. The titer of generated maternal antibodies correlated with the severity of FNAITP. High titer maternal anti–β3 anti-bodies caused severe fetal thrombocytopenia, intracranial hemorrhage, and even miscarriage. Furthermore, maternal administration of intravenous immunoglobulin G (IgG) ameliorated FNAITP and down-regulated pathogenic antibodies in both the maternal and fetal circulations.


2004 ◽  
Vol 186 (7) ◽  
pp. 2038-2045 ◽  
Author(s):  
Caroline B. Michielse ◽  
Arthur F. J. Ram ◽  
Paul J. J. Hooykaas ◽  
Cees A. M. J. J. van den Hondel

ABSTRACT Reductions to 2, 5, and 42% of the wild-type transformation efficiency were found when Agrobacterium mutants carrying transposon insertions in virD2, virC2, and virE2, respectively, were used to transform Aspergillus awamori. The structures of the T-DNAs integrated into the host genome by these mutants were analyzed by Southern and sequence analyses. The T-DNAs of transformants obtained with the virE2 mutant had left-border truncations, whereas those obtained with the virD2 mutant had truncated right ends. From this analysis, it was concluded that the virulence proteins VirD2 and VirE2 are required for full-length T-DNA integration and that these proteins play a role in protecting the right and left T-DNA borders, respectively. Multicopy and truncated T-DNA structures were detected in the majority of the transformants obtained with the virC2 mutant, indicating that VirC2 plays a role in correct T-DNA processing and is required for single-copy T-DNA integration.


2017 ◽  
Vol 41 (S1) ◽  
pp. S101-S102
Author(s):  
V. Djordjevic ◽  
T. Jevtovic Stoimenov

IntroductionSchizophrenia is treated with antipsychotics and other psychotropic medications, many of which are substrates for the highly polymorphic CYP2D6 enzyme. The most frequent variant allele is CYP2D6*4- leading cause of poor metabolism (PM) phenotype. PM causes the reduction of therapeutic response, increase the risk of adverse drug reactions and increase the plasma concentration of both drug and its metabolites above the levels of toxicity.The AimAnalysing CYP2D6*4 allele frequency among schizophrenic patients for further individualisation and rationalisation of therapy.Patients and methodsResearch was conducted on 38 schizophrenic patients and 110 healthy individuals. CYP2D6*4 allele was detected with allele specific PCR.ResultsBoth wild type allele carriers are 55% of the schizophrenic patients, 45% are wild type/*4heterozygous, and *4/*4 homozygous are not identified. There is a statistically significant difference in the genotype distribution (P < 0.05) between schizophrenic patients and healthy individuals. Significantly higher *4 allele frequency (37%) comparing to healthy individuals (P < 0.0001) indicates the necessary caution in administration of CYP2D6 substrates. A lower frequency of PMs in schizophrenic patients than in healthy individuals could be explained with CYP2D6 neuroactive substrate metabolism. Forty-five percent of the schizophrenic patients are intermediate metabolisers carrying the higher risk of adverse response to CYP2D6 substrates comparing to wild type homozygous. As none of the analyzed patients was PM, exceeded plasma concentrations of medications above toxic levels are not expected when administrating the right dosage.ConclusionAltered CYP2D6 metabolism may contribute to the vulnerability, clinical severity and treatment outcome of schizophrenia.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2021 ◽  
Author(s):  
Pavitra Ramdas ◽  
Vipin Bhardwaj ◽  
Aman Singh ◽  
Nagarjun Vijay ◽  
Ajit Chande

SERINC5 restricts nef-defective HIV-1 by affecting early steps of the virus life cycle. Distant retroviruses with a wide host-range encode virulent factors in response to the challenge by SERINC5. Yet, the evolutionary origins of this anti-retroviral activity, its prevalence among the paralogs, and its ability to target retroviruses remain understudied. In agreement with previous studies, we find that four human SERINC paralogs inhibit nef-defective HIV-1, with SERINC2 being an exception. Here, we demonstrate that this lack of activity in human SERINC2 is associated with its post-whole genome duplication (WGD) divergence, as evidenced by the ability of pre-WGD orthologs from yeast, fly, and a post-WGD-proximate SERINC2 from coelacanth to inhibit the virus. Intriguingly, Nef is unable to counter coelacanth SERINC2, indicating that such activity was directed towards other retroviruses found in coelacanth (like foamy viruses). However, foamy-derived vectors are intrinsically resistant to the action of SERINC2, and we show that the foamy virus envelope confers this resistance by affecting its steady-state levels. Our study highlights an ancient origin of anti-retroviral activity in SERINCs and a hitherto unknown interaction with a foamy virus. Importance SERINC5 constitutes a critical barrier to the propagation of retroviruses as highlighted by parallel emergence of anti-SERINC5 activities among distant retroviral lineages. Therefore, understanding the origin and evolution of these host factors will provide key information about virus-host relationships that can be exploited for future drug development. Here we show that SERINC5-mediated nef-defective HIV-1 infection inhibition is evolutionarily conserved. SERINC2 from coelacanth restricts HIV-1 and it was functionally adapted to target foamy viruses. Our findings provide insights into the evolutionary origin of anti-retroviral activity in SERINC gene family and uncover the role of SERINCs in shaping the long-term conflicts between retroviruses and their hosts.


Sign in / Sign up

Export Citation Format

Share Document