scholarly journals Global controls on phosphatization of fossils during the toarcian oceanic anoxic event

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sinjini Sinha ◽  
A. D. Muscente ◽  
James D. Schiffbauer ◽  
Matt Williams ◽  
Günter Schweigert ◽  
...  

AbstractKonservat-Lagerstätten—deposits with exceptionally preserved fossils—vary in abundance across geographic and stratigraphic space due to paleoenvironmental heterogeneity. While oceanic anoxic events (OAEs) may have promoted preservation of marine lagerstätten, the environmental controls on their taphonomy remain unclear. Here, we provide new data on the mineralization of fossils in three Lower Jurassic Lagerstätten—Strawberry Bank (UK), Ya Ha Tinda (Canada), and Posidonia Shale (Germany) —and test the hypothesis that they were preserved under similar conditions. Biostratigraphy indicates that all three Lagerstätten were deposited during the Toarcian OAE (TOAE), and scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) show that each deposit contains a variety of taxa preserved as phosphatized skeletons and tissues. Thus, despite their geographic and paleoenvironmental differences, all of these Lagerstätten were deposited in settings conducive to phosphatization, indicating that the TOAE fostered exceptional preservation in marine settings around the world. Phosphatization may have been fueled by phosphate delivery from climatically-driven sea level change and continental weathering, with anoxic basins acting as phosphorus traps.

2021 ◽  
Author(s):  
Brahimsamba Bomou ◽  
Guillaume Suan ◽  
Jan Schlögl ◽  
Anne-Sabine Grosjean ◽  
Baptiste Suchéras-Marx ◽  
...  

<p>Paleontological excavations realized by our group in Toarcian shales (Lower Jurassic) of the Grands Causses Basin in Roqueredonde (Hérault, France), yielded several specimens of marine vertebrates. The newly discovered specimens are partly or entirely preserved in anatomical connection and include a partial ichthyosaur skeleton with soft tissues, and a 4 m-long thalattosuchian longirostrine marine crocodile. A multi-proxy approach has been developed (XRD-bulk and clay mineralogy, Rock-Eval pyrolysis, phosphorus and mercury contents) in order to replace these findings in a well-defined temporal and paleoenvironmental context, and hence constrain the factors that led to their remarkable preservation. The fossiliferous succession exposes a 3 m-thick upper Pliensbachian interval of marl and nodular carbonate beds, overlain by a 3 m-thick interval of lower Toarcian laminated shales and limestone beds. Our high-resolution ammonite biostratigraphy, combined with inorganic and organic carbon isotope chemostratigraphy, shows that the fossiliferous Toarcian strata were deposited at a time of global warming and major carbon cycle perturbation known as the Toarcian Oceanic Anoxic Event (T-OAE). The studied succession shows several similarities with the classical coeval fossiliferous levels of the Posidonia Shale in SW Germany, including high organic matter and hydrocarbon contents as well as extremely reduced sedimentation rates. These results indicate that the unusual richness in well-preserved vertebrates of the studied site can be explained by a combination of warming-induced, low salinity and stratified waters, prolonged seafloor anoxia and reduced dilution by low carbonate and terrigenous input due to rapid sea-level rise. Our results also reveal a significant peak in mercury at the base of the T-OAE interval, consistent with that recorded in several coeval sections (e.g. Portugal, Morocco, Argentina, Chile). This mercury anomaly, most likely resulting from intense volcanic activity Karoo-Ferrar large igneous province, suggests that widespread exceptional vertebrate preservation during the T-OAE was initiated by a suite of severe environmental perturbations ultimately triggered by intense volcanic emissions.</p>


2021 ◽  
pp. 1-15
Author(s):  
Hugh C. Jenkyns ◽  
Sophie Macfarlane

Abstract Two fallen blocks of the Marlstone and stratigraphically overlying Junction Bed sampled on the beach below Doghouse Cliff in Dorset, UK (Wessex Basin) have been examined for carbon and oxygen isotopes of bulk carbonate as well as for strontium, carbon and oxygen isotopes and Mg:Ca ratios in the contained belemnites. The sequence, which contains most of the Toarcian zones and subzones within a metre or less of grey to yellow to pink, red and brown fossil-rich nodular limestone, is extremely condensed and lithologically similar to pelagic red limestones of the Tethyan Jurassic that are locally mineralized with Fe-Mn oxyhydroxides (e.g., Rosso Ammonitico). Strontium-isotope ratios of the contained belemnites are compatible with existing reference curves and both blocks show a rise to more radiogenic values post-dating the Pliensbachian–Toarcian boundary. The high degree of correlation between the relatively negative carbon and oxygen isotopes of the bulk carbonate is compatible with significant diagenetic overprint, and contrasts with higher carbon-isotope values in coeval condensed coccolith-rich limestones elsewhere. Evidence for the characteristic signature of the Toarcian Oceanic Anoxic Event, as represented by organic-rich sediment, is absent, possibly owing to a stratigraphic gap. Both blocks exhibit abrupt carbon-isotope shifts to lower values, one of which could represent the limbs of an incompletely recorded negative excursion associated with the Toarcian Oceanic Anoxic Event. That the Toarcian Oceanic Anoxic Event was also a significant hyperthermal is illustrated in both blocks by a drop in oxygen-isotope values and rise in Mg:Ca ratios of belemnites close to the base of the Junction Bed in the lowest part of the serpentinum zone.


2014 ◽  
Vol 11 (5) ◽  
pp. 6815-6844
Author(s):  
S. C. Löhr ◽  
M. J. Kennedy

Abstract. Organic carbon (OC) enrichment in sediments deposited during Oceanic Anoxic Events (OAEs) is commonly attributed to elevated productivity and marine anoxia. We find that OC enrichment in the late Cenomanian aged OAE2 at Demerara Rise was controlled by co-occurrence of anoxic bottom-water, sufficient productivity to saturate available mineral surfaces and variable deposition of high surface area detrital smectite clay. Redox indicators show consistently oxygen-depleted conditions, while a strong correlation between OC concentration and sediment mineral surface area (R2=0.92) occurs across a range of TOC values from 9–33%. X-ray diffraction data indicates intercalation of OC in smectite interlayers while electron, synchrotron infrared and X-ray microscopy show an intimate association between clay minerals and OC, consistent with preservation of OC as organomineral nanocomposites and aggregates rather than discrete, μm-scale pelagic detritus. Since the consistent ratio between TOC and mineral surface area suggests that excess OC relative to surface area is lost, we propose that it is the varying supply of smectite that best explains variable organic enrichment against a backdrop of continuous anoxia, which is conducive to generally high TOC during OAE2 at Demerara Rise. Smectitic clays are unique in their ability to form stable organomineral nanocomposites and aggregates that preserve organic matter, and are common weathering products of continental volcanic deposits. An increased flux of smectite coinciding with high carbon burial is consistent with evidence for widespread volcanism during OAE2, so that organomineral carbon burial may represent a potential feedback to volcanic degassing of CO2.


2019 ◽  
Author(s):  
Stefano Visentin ◽  
Elisabetta Erba ◽  
Joerg Mutterlose

Calcareous nannofossil biostratigraphy was carried out in Upper Pliensbachian – Lower Toarcian sediments, which cover the Toarcian Oceanic Anoxic Event (T-OAE) interval. In particular, semiquantitative analyses were performed on a total of 156 samples in the composite Sogno Core (Lombardy Basin, Southern Alps) representing a pelagic Tethyan section. Quantitative investigations were applied to additional 168 samples across the Amaltheenton Fm. and Posidonienschiefer Fm., from two cores of the Boreal Realm (Lower Saxony Basin, northern Germany). Primary and secondary events of the Tethyan and Boreal zonations were recognized, allowing the identifications of the NJT5, NJT6 nannofossil Zones for the Sogno Core and the NJ5, NJ6, NJ7 Zones for the German sections, respectively. The sequence of nannofossil biohorizons is generally consistent with data available for various areas at lower and higher latitudes, confirming their reproducibility and reliability for intra and inter-regional correlations. Geochemistry evidences the presence of the negative C isotopic excursion across the “Fish Level” black shale interval expression of the T-OAE in the Sogno Core. The same anomaly is recorded in the German successions at the base of the Posidonia Shale witnessing the passage from well oxygenated to predominantly anoxic conditions. Our results show that the T-OAE C isotopic excursion recorded in the Sogno Core is excellently constrained by the first occurrence (FO) of Carinolithus superbus at the onset and the last occurrence (LO) of Mitrolithus jansae at the end. A significant decrease in abundance and size of Schizosphaerella punctulata (the “S. punctulata crisis”) and an abundance drop of M. jansae further characterise the T-OAE perturbation. Only S. punctulata shows a recovery at the end of the T-OAE, while M. jansae barely survived the palaeoenviromental stress and disappeared soon after its termination. The extreme rareness of S. punctulata and the absence of M. jansae in the Boreal Realm prevent the recognition of the “S. punctulata crisis” and the M. jansae decline. Our study reveals the LO of Biscutum finchii together with the FO of C. superbus as an additional event approximating the onset of the C isotopic excursion exclusively in the German successions. Further events, such as the LOs of Biscutum grandis, Crepidolithus granulatus and Parhabdolithus liasicus are detected within the C isotopic anomaly exclusively in the German sections. Nannofossil biostratigraphy permits the effective dating and correlating of Early Jurassic major palaeoceanographic events and particularly of the T-OAE which are of a great importance to derive a definitive model for the Posidonia Shale deposition.


10.1144/sp514 ◽  
2021 ◽  
Vol 514 (1) ◽  
pp. NP-NP
Author(s):  
M. Reolid ◽  
L. V. Duarte ◽  
E. Mattioli ◽  
W. Ruebsam

The Toarcian Oceanic Anoxic Event, also known as the Jenkyns Event, was a hyperthermal episode which occurred during the early Toarcian (c. 183 Ma; Early Jurassic) and resulted in numerous collateral effects including global warming, enhanced weathering, sea-level change, carbonate crisis, marine anoxia–dysoxia, and a second-order mass extinction. This volume presents the last advances for understanding early Toarcian environmental changes through different disciplines: biostratigraphy, micropalaeontology, palaeontology, ichnology, palaeoecology, sedimentology, integrated stratigraphy, inorganic, organic and isotopic geochemistry, and cyclostratigraphy. The study of this abrupt climate change is critical for predicting future global changes, and for understanding the complex biogeochemical interactions through time between geosphere, atmosphere, hydrosphere and biosphere.


2014 ◽  
Vol 185 (6) ◽  
pp. 359-377 ◽  
Author(s):  
François Baudin ◽  
Laurent Riquier

AbstractMost oceanic anoxic events (OAEs) took place during the middle part of the Cretaceous and the Late Hauterivian probably recorded the first anoxic event within this peculiar time interval. The so-called Faraoni event (~131 Ma) was initially defined as a short-lived anoxic event restricted to the Mediterranean domain. Since its recognition, numerous geochemical studies were conducted on the Faraoni event and new occurrences of this event were suggested outside the Tethyan domain. This paper presents an update on the Late Hauterivian Faraoni event and examines if this event agrees with the definition of OAEs.


Sign in / Sign up

Export Citation Format

Share Document