muscle mechanoreceptor
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

2018 ◽  
Vol 314 (4) ◽  
pp. H716-H723 ◽  
Author(s):  
André L. Teixeira ◽  
Plinio S. Ramos ◽  
Milena Samora ◽  
Jeann L. Sabino-Carvalho ◽  
Djalma R. Ricardo ◽  
...  

Previous studies have indicated that central GABAergic mechanisms are involved in the heart rate (HR) responses at the onset of exercise. On the basis of previous research that showed similar increases in HR during passive and active cycling, we reasoned that the GABAergic mechanisms involved in the HR responses at the exercise onset are primarily mediated by muscle mechanoreceptor afferents. Therefore, in this study, we sought to determine whether central GABA mechanisms are involved in the muscle mechanoreflex-mediated HR responses at the onset of exercise in humans. Twenty-eight healthy subjects (14 men and 14 women) aged between 18 and 35 yr randomly performed three bouts of 5-s passive and active cycling under placebo and after oral administration of diazepam (10 mg), a benzodiazepine that produces an enhancement in GABAA activity. Beat-to-beat HR (electrocardiography) and arterial blood pressure (finger photopletysmography) were continuously measured. Electromyography of the vastus lateralis was obtained to confirm no electrical activity during passive trials. HR increased from rest under placebo and further increased after administration of diazepam in both passive (change: 12 ± 1 vs. 17 ± 1 beats/min, P < 0.01) and active (change: 14 ± 1 vs. 18 ± 1 beats/min, P < 0.01) cycling. Arterial blood pressure increased from rest similarly during all conditions ( P > 0.05). Importantly, no sex-related differences were found in any variables during experiments. These findings demonstrate, for the first time, that the GABAergic mechanisms significantly contribute to the muscle mechanoreflex-mediated HR responses at the onset of exercise in humans. NEW & NOTEWORTHY We found that passive and voluntary cycling evokes similar increases in heart rate and that these responses were enhanced after diazepam administration, a benzodiazepine that enhances GABAA activity. These findings suggest that the GABAergic system may contribute to the muscle mechanoreflex-mediated vagal withdrawal at the onset of exercise in humans.


2014 ◽  
Vol 306 (10) ◽  
pp. R728-R734 ◽  
Author(s):  
Tatsuro Amano ◽  
Masashi Ichinose ◽  
Takeshi Nishiyasu ◽  
Yoshimitsu Inoue ◽  
Shunsaku Koga ◽  
...  

Activation of muscle metaboreceptors and mechanoreceptors has been shown to independently influence the sweating response, while their integrative control effects remain unclear. We examined the sweating response when the two muscle receptors are concurrently activated in different limbs, as well as the blood pressure response. In total, 27 young males performed passive calf muscle stretches (muscle mechanoreceptor activation) for 30 s in a semisupine position with and without postisometric handgrip exercise muscle ischemia (PEMI, muscle metaboreceptor activation) at exercise intensities of 35 and 50% of maximum voluntary contraction (MVC) under hot conditions (ambient temperature, 35°C, relative humidity, 50%). Passive calf muscle stretching alone increased the mean sweating rate significantly on the forehead, chest, and thigh (SRmean) and mean arterial blood pressure (MAP), but not the heart rate (HR), from prestretching levels by 0.04 ± 0.01 mg·cm2·min−1, 4.0 ± 1.3 mmHg ( P < 0.05), and −1.0 ± 0.5 beats/min ( P > 0.05), respectively. The SRmean and MAP during PEMI were significantly higher than those at rest. The passive calf muscle stretch during PEMI increased MAP significantly by 3.4 ± 1.0 and 2.0 ± 0.7 mmHg for 35 and 50% of MVC, respectively ( P < 0.05), but not that of SRmean or HR at either exercise intensity. These results suggest that sweating and blood pressure responses to concurrent activation of the two muscle receptors in different limbs differ and that the influence of calf muscle mechanoreceptor activation alone on the sweating response disappears during forearm muscle metaboreceptor activation.


2012 ◽  
Vol 303 (3) ◽  
pp. H332-H340 ◽  
Author(s):  
Katsuya Yamauchi ◽  
Audrey J. Stone ◽  
Sean D. Stocker ◽  
Marc P. Kaufman

We reported previously that tempol attenuated the exercise pressor and muscle mechanoreceptor reflexes in rats whose femoral arteries were ligated, whereas tempol did not attenuate these reflexes in rats whose femoral arteries were freely perfused. Although the mechanism whereby tempol attenuated these reflexes in rats whose femoral artery was ligated was independent of its ability to scavenge reactive oxygen species, its nature remains unclear. An alternative explanation for the tempol-induced attenuation of these reflexes involves ATP-sensitive potassium channels (KATP) and calcium-activated potassium channels (BKCa), both of which are opened by tempol. We tested the likelihood of this explanation by measuring the effects of either glibenclamide (0.1 mg/kg), which blocks KATP channels, or iberiotoxin (20 or 40 μg/kg), which blocks BKCa channels, on the tempol-induced attenuation of the exercise pressor and muscle mechanoreceptor reflexes in decerebrated rats whose femoral arteries were ligated. We found that glibenclamide prevented the tempol-induced attenuation of both reflexes, whereas iberiotoxin did not. We also found that the amount of protein comprising the pore of the KATP channel in the dorsal root ganglia innervating hindlimbs whose femoral artery was ligated was significantly greater than that in the dorsal root ganglia innervating hindlimbs whose femoral arteries were freely perfused. In contrast, the amounts of protein comprising the BKCa channel in the dorsal root ganglia innervating the ligated and freely perfused hindlimbs were not different. We conclude that tempol attenuated both reflexes by opening KATP channels, an effect that hyperpolarized muscle afferents stimulated by static contraction or tendon stretch.


2008 ◽  
Vol 294 (4) ◽  
pp. H1956-H1962 ◽  
Author(s):  
Holly R. Middlekauff ◽  
Josephine Chiu ◽  
Michele A. Hamilton ◽  
Gregg C. Fonarow ◽  
W. Robb MacLellan ◽  
...  

Prior work in animals and humans suggests that muscle mechanoreceptor control of sympathetic activation [muscle sympathetic nerve activity (MSNA)] during exercise in heart failure (HF) patients is heightened compared with that of healthy humans and that muscle mechanoreceptors are sensitized by metabolic by-products. We sought to determine whether cyclooxygenase products and/or endogenous adenosine, two metabolites of ischemic exercise, sensitize muscle mechanoreceptors during rhythmic handgrip (RHG) exercise in HF patients. Indomethacin, which inhibits the production of prostaglandins, and saline control were infused in 12 HF patients. In a different protocol, aminophylline, which inhibits adenosine receptors, and saline control were infused in 12 different HF patients. MSNA was recorded (microneurography). During exercise following saline, MSNA increased in the first minute of exercise, consistent with baseline heightened mechanoreceptor sensitivity. MSNA continued to increase during 3 min of RHG, indicative that muscle mechanoreceptors are sensitized by ischemia metabolites. Indomethacin, but not aminophylline, markedly attenuated the increase in MSNA during the entire 3 min of low-level rhythmic exercise, consistent with the sensitization of muscle mechanoreceptors by cyclooxygenase products. Interestingly, even the early increase in MSNA was abolished by indomethacin infusion, indicative of the very early generation of cyclooxygenase products after the onset of exercise in HF patients. In conclusion, muscle mechanoreceptors mediate the increase in MSNA during low-level RHG exercise in HF. Cyclooxygenase products, but not endogenous adenosine, play a central role in muscle mechanoreceptor sensitization. Finally, muscle mechanoreceptors in patients with HF have heightened basal sensitivity to mechanical stimuli, which also appears to be mediated by the early generation of cyclooxygenase products, resulting in exaggerated early increases in MSNA.


2007 ◽  
Vol 39 (Supplement) ◽  
pp. S285
Author(s):  
Jian Cui ◽  
Vernon Mascarenhas ◽  
Raman Moradkhan ◽  
Cheryl Blaha ◽  
Steve Gugoff ◽  
...  

2004 ◽  
Vol 97 (5) ◽  
pp. 1681-1685 ◽  
Author(s):  
Ken Tokizawa ◽  
Masaki Mizuno ◽  
Yoshio Nakamura ◽  
Isao Muraoka

We investigated whether selective muscle mechanoreceptor activation in the lower limb opposes arm muscle metaboreceptor activation-mediated limb vasoconstriction. Seven subjects completed two trials: one control trial and one stretch trial. Both trials included 2 min of handgrip and 2 min of posthandgrip exercise muscle ischemia (PEMI). In the stretch trial, a 2-min sustained triceps surae stretch, by brief passive dorsiflexion of the right foot, was performed simultaneously during PEMI. Mean arterial pressure, heart rate, and forearm blood flow (FBF) in the nonexercised arm and forearm vascular conductance (FVC) in the nonexercised arm were measured. During PEMI in the control trial, mean arterial pressure was significantly greater and FBF and FVC were significantly lower than baseline values ( P < 0.05 for each). In contrast, FBF and FVC during PEMI in the stretch trial exhibited different responses than in the control trial. FBF and FVC were significantly greater in the stretch trial than in the control trial (FBF, 5.5 ± 0.4 vs. 3.8 ± 0.4 ml·100 ml−1·min−1; FVC, 0.048 ± 0.004 vs. 0.033 ± 0.003 unit, respectively; P < 0.05). These results indicate that passive triceps surae stretch can inhibit vasoconstriction in the nonexercised forearm mediated via muscle metaboreceptor activation in the exercised arm.


2004 ◽  
Vol 287 (5) ◽  
pp. H1937-H1943 ◽  
Author(s):  
Holly R. Middlekauff ◽  
Josephine Chiu ◽  
Michele A. Hamilton ◽  
Gregg C. Fonarow ◽  
W. Robb MacLellan ◽  
...  

Prior work in animals suggests that muscle mechanoreceptor control of sympathetic activation (MSNA) during exercise in heart failure (HF) is heightened and that muscle mechanoreceptors are sensitized by metabolic by-products. We sought to determine whether 1) muscle mechanoreceptor control of MSNA is enhanced in HF patients and 2) lactic acid sensitizes muscle mechanoreceptors during rhythmic handgrip (RHG) exercise in healthy humans and patients with HF. Dichloroacetate (DCA), which reduces the production of lactic acid, or saline control was infused in 12 patients with HF and 13 controls during RHG. MSNA was recorded (microneurography). After saline was administered and during exercise thereafter, MSNA increased earlier in HF compared with controls, consistent with baseline-heightened mechanoreceptor sensitivity. In both HF and controls, MSNA increased during the 3-min exercise protocol, consistent with further sensitization of muscle mechanoreceptors by metabolic by-product(s). During posthandgrip circulatory arrest, MSNA returned rapidly to baseline levels, excluding the muscle metaboreceptors as mediators of the sympathetic excitation during RHG. To isolate muscle mechanoreceptors from central command, we utilized passive exercise in 8 HF and 11 controls, and MSNA was recorded. MSNA increased significantly during passive exercise in HF but not in controls. In conclusion, muscle mechanoreceptors mediate the increase in MSNA during low-level RHG exercise in healthy humans, and this muscle mechanoreceptor control is augmented further in HF. Neither lactate generation nor the fall in pH during RHG plays a central role in muscle mechanoreceptor sensitization. Finally, muscle mechanoreceptors in patients with HF have heightened basal sensitivity to mechanical stimuli resulting in exaggerated early increases in MSNA.


2004 ◽  
Vol 287 (5) ◽  
pp. H1944-H1949 ◽  
Author(s):  
Holly R. Middlekauff ◽  
Josephine Chiu

Evidence in healthy animals and humans is accumulating that the muscle mechanoreceptors play an important role in mediating sympathetic activation during exercise, especially rhythmic exercise. Furthermore, muscle mechanoreceptors appear to be sensitized acutely during exercise by metabolic by-products, although the identity of these by-products remains unknown. The purpose of this study was to determine whether the metabolic by-products 1) prostaglandins and/or 2) adenosine sensitize muscle mechanoreceptor control of muscle sympathetic nerve activity (MSNA) in normal humans during rhythmic exercise. MSNA was recorded using microneurography. Muscle mechanoreceptors were activated by low-level rhythmic forearm exercise for 3 min. In 16 healthy humans, intra-arterial indomethacin was infused into the exercising arm to inhibit synthesis of cyclooxygenase products. In 18 healthy humans, intra-arterial aminophylline was infused into the exercising arm to block adenosine receptors. During saline control, MSNA increased significantly during exercise. Inhibition of cycloxygenase during exercise dramatically and virtually completely eliminated the reflex sympathetic activation. Inhibition of adenosine receptors with aminophylline had no effect on the sympathetic activation during muscle mechanoreceptor stimulation. In conclusion, muscle mechanoreceptors are sensitized by cyclooxygenase products, but not by adenosine, during 3 min of low-level rhythmic handgrip exercise in healthy humans. Further studies of other metabolic by-products and of patients with enhanced muscle mechanoreceptor sensitivity, such as patients with heart failure, are warranted.


2004 ◽  
Vol 96 (6) ◽  
pp. 2115-2119 ◽  
Author(s):  
Manabu Shibasaki ◽  
Mieko Sakai ◽  
Mayumi Oda ◽  
Craig G. Crandall

The objective of this study was to identify whether muscle mechanoreceptor stimulation is capable of modulating sweat rate. Seven healthy subjects performed two 20-min bouts of supine exercise on a tandem cycle ergometer (60 rpm at 65% of maximal heart rate). After one bout, the subject stopped exercising (i.e., no pedaling), whereas, after the other bout, the subject's legs were passively cycled (at 60 rpm) via a second person cycling the tandem ergometer. This allows for mechanical stimulation of muscle with minimal activation of central command. Esophageal temperature (Tes), mean skin temperature (T̄sk), heart rate, mean arterial blood pressure, oxygen consumption, cutaneous vascular conductance (CVC), and sweat rate were not different during the two exercise bouts. Regardless of the mode of exercise recovery, there were no differences in Tes, T̄sk, or CVC. In contrast, early in the recovery period, chest and forearm sweat rate were significantly greater in the passive cycling recovery mode relative to the no-pedaling condition (chest: 0.57 ± 0.13 vs. 0.39 ± 0.14, forearm: 0.30 ± 0.05 vs. 0.12 ± 0.02 mg·cm-2·min-1; both P < 0.05). These results suggested that muscle mechanoreceptor stimulation to the previously activated muscle is capable of modulating sweat rate.


2001 ◽  
Vol 90 (5) ◽  
pp. 1714-1719 ◽  
Author(s):  
Holly R. Middlekauff ◽  
Egbert U. Nitzsche ◽  
Carl K. Hoh ◽  
Michele A. Hamilton ◽  
Gregg C. Fonarow ◽  
...  

In heart failure (HF) patients, reflex renal vasoconstriction during exercise is exaggerated. We hypothesized that muscle mechanoreceptor control of renal vasoconstriction is exaggerated in HF. Nineteen HF patients and nineteen controls were enrolled in two exercise protocols: 1) low-level rhythmic handgrip (mechanoreceptors and central command) and 2) involuntary biceps contractions (mechanoreceptors). Renal cortical blood flow was measured by positron emission tomography, and renal cortical vascular resistance (RCVR) was calculated. During rhythmic handgrip, peak RCVR was greater in HF patients compared with controls (37 ± 1 vs. 27 ± 1 units; P < 0.01). Change in (Δ) RCVR tended to be greater as well but did not reach statistical significance (10 ± 1 vs. 7 ± 0.9 units; P = 0.13). RCVR was returned to baseline at 2–3 min postexercise in controls but remained significantly elevated in HF patients. During involuntary muscle contractions, peak RCVR was greater in HF patients compared with controls (36 ± 0.7 vs. 24 ± 0.5 units; P < 0.0001). The Δ RCVR was also significantly greater in HF patients compared with controls (6 ± 1 vs. 4 ± 0.6 units; P = 0.05). The data suggest that reflex renal vasoconstriction is exaggerated in both magnitude and duration during dynamic exercise in HF patients. Given that the exaggerated response was elicited in both the presence and absence of central command, it is clear that intact muscle mechanoreceptor sensitivity contributes to this augmented reflex renal vasoconstriction.


Sign in / Sign up

Export Citation Format

Share Document