scholarly journals Simultaneous Determination of Ferulic Acid and Vanillin in Vanilla Extracts Using Voltammetric Sensor Based on Electropolymerized Bromocresol Purple

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 288
Author(s):  
Guzel Ziyatdinova ◽  
Anastasiya Zhupanova ◽  
Rustam Davletshin

Natural phenolic antioxidants are one of the widely studied compounds in life sciences due to their important role in oxidative stress prevention and repair. The structural similarity of these antioxidants and their simultaneous presence in the plant samples stipulate the development of methods for their quantification. The current work deals with the simultaneous determination of vanillin and its bioprecursor ferulic acid using a voltammetric sensor for the first time. A sensor based on the layer-by-layer deposition of the polyaminobenzene sulfonic acid functionalized single-walled carbon nanotubes (f-SWCNTs) and electropolymerized bromocresol purple has been developed for this purpose. The best response of co-existing target analytes was registered for the polymer obtained from the 25 µM dye by 10-fold potential cycling from 0.0 to 1.2 V with the scan rate of 100 mV s−1 in 0.1 M phosphate buffer (PB), pH 7.0. Scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy (EIS) confirmed the effectivity of the sensor developed. The linear dynamic ranges of 0.10–5.0 µM and 5.0–25 µM for both analytes with the detection limits of 72 nM and 64 nM for ferulic acid and vanillin, respectively, were achieved in differential pulse mode. The sensor was applied for the analysis of vanilla extracts.

2021 ◽  
Vol 5 (1) ◽  
pp. 47
Author(s):  
Anastasiya Zhupanova ◽  
Guzel Ziyatdinova

Natural phenolic antioxidants are extensively studied compounds due to their positive health effect and wide distribution in human diets. The simultaneous occurrence in samples requires selective methods for their determination. Electrochemical sensor based on the polyaminobenzene sulfonic acid functionalized single-walled carbon nanotubes (f-SWCNT) and electropolymerized bromocresol purple has been developed for the simultaneous quantification of ferulic acid and vanillin. The electrode has been characterized by scanning electron microscopy (SEM) and electrochemical methods, and the effectivity of the developed modifier has been confirmed. Thus, the novel sensitive voltammetric sensor is simple to fabricate, reliable, cost-effective, and can be applied for foodstuff screening.


2018 ◽  
Vol 30 (11) ◽  
pp. 2620-2627 ◽  
Author(s):  
Miloš Ognjanović ◽  
Dalibor M. Stanković ◽  
Martin Fabián ◽  
Aleksandar Vukadinović ◽  
Željko Prijović ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3041 ◽  
Author(s):  
Yanqing Liu ◽  
Gengxin Hu ◽  
Hongwu Wang ◽  
Su Yao ◽  
Yinjian Ye

A hybrid nanocomposite consisting of hydroxylated multi-walled carbon nanotubes (MWCNTs−OH) and cube mesoporous carbon (CMK−8) was applied in this study to construct an MWCNT−OH/CMK−8/gold electrode (GE) electrochemical sensor and simultaneously perform the electro-reduction of olaquindox (OLA) and carbadox (CBX). The respective peak currents of CBX and OLA on the modified electrode increased by 720- and 595-fold relative to the peak current of GE. The performances of the modified electrode were investigated with electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Then, the modified electrodes were used for the individual and simultaneous determination of OLA and CBX. The fabricated sensor demonstrated a linear response at 0.2–500 nmol/L in optimum experimental conditions, and the detection limits were 104.1 and 62.9 pmol/L for the simultaneous determination of OLA and CBX, respectively. As for individual determination, wide linear relationships were obtained for the detected OLA with levels of 0.05–500 nmol/L with LOD of 20.7 pmol/L and the detected CBX with levels of 0.10–500 nmol/L with LOD of 50.2 pmol/L. The fabricated sensor was successfully used in the independent and simultaneous determination of OLA and CBX in spiked pork samples.


Sign in / Sign up

Export Citation Format

Share Document