musculoskeletal development
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 2)

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3402
Author(s):  
Chris W. Rogers ◽  
Erica K. Gee ◽  
Keren E. Dittmer

Within the lay literature, and social media in particular, there is often debate about the age at which a horse should be started and introduced to racing or sport. To optimize the welfare and longevity of horses in racing and sport, it is important to match exercise with musculoskeletal development and the ability of the musculoskeletal system to respond to loading. The justification for not exercising horses at a certain age is often in contrast to the scientific literature and framed, with incorrect generalizations, with human growth. This review provides a relative comparison of the growth and development of the horse to the descriptors used to define growth and development in humans. Measures of physeal closure and somatic growth demonstrate that the horse completes the equivalent of rapid infant growth by weaning (4–6 months old). At approximately 11 months old, the horse completes the equivalent of the childhood phase of growth and enters puberty. At 2 years old, the horse has achieved most measures of maturity used within the human literature, including the plateauing of vertical height, closure of growth plates, and adult ratios of back length:wither height and limb length:wither height. These data support the hypothesis that the horse evolved to be a precocious cursorial grazer and is capable of athletic activity, and use in sport, relatively early in life.


2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
Stephanie C. McClelland ◽  
Miranda Reynolds ◽  
Molly Cordall ◽  
Mark E. Hauber ◽  
Wolfgang Goymann ◽  
...  

Movement of the embryo is essential for musculoskeletal development in vertebrates, yet little is known about whether, and why, species vary. Avian brood parasites exhibit feats of strength in early life as adaptations to exploit the hosts that rear them. We hypothesized that an increase in embryonic movement could allow brood parasites to develop the required musculature for these demands. We measured embryo movement across incubation for multiple brood-parasitic and non-parasitic bird species. Using a phylogenetically controlled analysis, we found that brood parasites exhibited significantly increased muscular movement during incubation compared to non-parasites. This suggests that increased embryo movement may facilitate the development of the stronger musculoskeletal system required for the demanding tasks undertaken by young brood parasites.


2021 ◽  
Vol 8 ◽  
Author(s):  
Domenico Azzolino ◽  
Giulia Carla Immacolata Spolidoro ◽  
Edoardo Saporiti ◽  
Costanza Luchetti ◽  
Carlo Agostoni ◽  
...  

Aging is characterized by the progressive decline of muscle mass and function, the so-called sarcopenia. Also bone loss is widespread among older people. Sarcopenia and osteopenia/osteoporosis are associated with several adverse outcomes including falls, risk of fractures, functional decline, frailty, and mortality. Recently, the life-course approach to prevent or delay functional decline has become very popular. Regarding musculoskeletal health, there is suggestive evidence that acting during critical or sensitive periods of life in which each person build-up its biological reserves may influence the rate of functional decline in the later stages of life. A life-course approach to musculoskeletal health should take place during early life when plasticity allows more easily the attainment of the peak of the musculoskeletal system driven by environmental stimuli. The rate of the subsequent decline will depend on the peak previously reached. Nutrition and physical exercise are important environmental factors that can influence musculoskeletal development by favoring and maintaining peak bone and muscle mass and strength. Here we provide an overview of body composition changes occurring across the lifespan and strategies based on nutrition and physical exercise to support musculoskeletal health as well as minimizing losses during older life.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1057
Author(s):  
Hairong Chen ◽  
Yang Song ◽  
Rongrong Xuan ◽  
Qiuli Hu ◽  
Julien S. Baker ◽  
...  

The fetal movements during different gestational weeks are essential for normal musculoskeletal development. The kinematic characteristics of fetuses with small differences in gestational weeks may be different and important. Ultrasonographic videos of fetal kicking action and plantarflexion action were collected from three healthy pregnant women (24, 27, and 30 gestational weeks) with normal fetal development. The kinematic characteristics, including angular range and angular velocity, were analyzed. These kinematic parameters were measured using simi motion. The final knee angle was found to decrease with progressive gestational weeks. Compared with 24 w, the knee joint angle at 27 w and 30 w was significantly reduced at the end of a kick-type movement (p < 0.01). Except for the mean angular velocity of the knee joint, there were no significant differences in the other conditions. The value at 30 w for mean angular velocity was significantly higher than that at 24 w (p = 0.02). In the ankle joint, no significant differences were observed between different conditions. Therefore, we can conclude that there was no significant difference in the kinematic characteristics of the ankle joint for small gestational age gaps, but there was a significant difference in the knee joint. As the gestation weeks increase, the range of kicking motion tends to decrease. The reason may be that with the increase of gestational weeks, fetal lower limb musculoskeletal development is gradually enhanced; the slower growth rate indicates that development reaches a peak level in weeks 24 to 30.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kenon Chua ◽  
Victor K. Lee ◽  
Cheri Chan ◽  
Andy Yew ◽  
Eric Yeo ◽  
...  

Wnt signaling plays a critical role in bone formation, homeostasis, and injury repair. Multiple cell types in bone have been proposed to produce the Wnts required for these processes. The specific role of Wnts produced from cells of hematopoietic origin has not been previously characterized. Here, we examined if hematopoietic Wnts play a role in physiological musculoskeletal development and in fracture healing. Wnt secretion from hematopoietic cells was blocked by genetic knockout of the essential Wnt modifying enzyme PORCN, achieved by crossing Vav-Cre transgenic mice with Porcnflox mice. Knockout mice were compared with their wild-type littermates for musculoskeletal development including bone quantity and quality at maturation. Fracture healing including callus quality and quantity was assessed in a diaphyseal fracture model using quantitative micro computer-assisted tomographic scans, histological analysis, as well as biomechanical torsional and 4-point bending stress tests. The hematopoietic Porcn knockout mice had normal musculoskeletal development, with normal bone quantity and quality on micro-CT scans of the vertebrae. They also had normal gross skeletal dimensions and normal bone strength. Hematopoietic Wnt depletion in the healing fracture resulted in fewer osteoclasts in the fracture callus, with a resultant delay in callus remodeling. All calluses eventually progressed to full maturation. Hematopoietic Wnts, while not essential, modulate osteoclast numbers during fracture healing. These osteoclasts participate in callus maturation and remodeling. This demonstrates the importance of diverse Wnt sources in bone repair.


Author(s):  
R. Li ◽  
C. G. Boer ◽  
L. Oei ◽  
Carolina Medina-Gomez

Abstract Purpose of the review The human gut harbors a complex community of microbes that influence many processes regulating musculoskeletal development and homeostasis. This review gives an update on the current knowledge surrounding the impact of the gut microbiota on musculoskeletal health, with an emphasis on research conducted over the last three years. Recent findings The gut microbiota and their metabolites are associated with sarcopenia, osteoporosis, osteoarthritis, and rheumatoid arthritis. The field is moving fast from describing simple correlations to pursue establishing causation through clinical trials. Summary The gut microbiota and their microbial-synthesized metabolites hold promise for offering new potential alternatives for the prevention and treatment of musculoskeletal diseases given its malleability and response to environmental stimuli.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 634
Author(s):  
Amanda Pufall ◽  
Alexandra Harlander-Matauschek ◽  
Michelle Hunniford ◽  
Tina M. Widowski

Previous research indicates that the musculoskeletal development of pullets is improved when pullets are reared in aviaries compared to conventional rearing cages. However, there are considerable differences in rearing aviary design. To measure locomotion and musculoskeletal development of brown (n = 7) and white-feathered (n = 8) strains of pullets, 15 commercial flocks in three styles of rearing aviaries differing in structural complexity (n = 5 per style) were visited three times: 25.9 ± 6.67, 68.0 ± 4.78, and 112.1 ± 3.34 days of age. Locomotion (duration of standing, sitting, walking, running, flying, and rates jumping, flying, group running and walking) was analysed from videos recorded three times per day: at the beginning, middle, and end of the light cycle. Pullets for dissection were taken on visits 2 and 3. Pullets in the most complex system (style 3; S3) spent the most time locomoting throughout rearing (p < 0.05). Pullets in S3, particularly white-feathered strains, performed the highest rate of vertical transitions (p < 0.05). There were no differences in any of the proportional muscle weights between aviaries styles (p > 0.05) despite the differences in locomotion. White-feathered strains, however, had proportionally heavier pectoralis major (p < 0.0001), pectoralis minor (p < 0.0001), and lighter leg muscles (p < 0.0001) than brown-feathered strains. White-feathered strains and pullets in S3 also had proportionally stronger tibiae and femurs than brown-feathered strains and pullets housed in the least structurally complex system (style 1; S1) (p < 0.05). However, there were no differences found in the breaking strength of the radius and humerus between strain colours or aviary styles (p < 0.05). Therefore, strain, as well as differences in rearing aviary design, can affect the types of locomotion that growing pullets perform, which may, in turn, impact their skeletal development.


2021 ◽  
Author(s):  
Amitabha Bandyopadhyay ◽  
Philippa Francis‐West ◽  
Dhirendra Katti ◽  
Alberto Roselló‐Díez

2021 ◽  
Author(s):  
Doyoon Kim ◽  
Byeongdu Lee ◽  
Brittany Paige Marshall ◽  
Stavros Thomopoulos ◽  
Young-Shin Jun

The adaptive response of bones to mechanical loading is essential for musculoskeletal development. Despite the importance of collagen in bone mineralization, little is known about how cyclic strain influences physicochemical...


Sign in / Sign up

Export Citation Format

Share Document