chloroplast envelope membrane
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Carsten Völkner ◽  
Lorenz Josef Holzner ◽  
Philip M Day ◽  
Amra Dhabalia Ashok ◽  
Jan de Vries ◽  
...  

Abstract Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation (FACC) channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K+ conductance (RCK) domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K+ uptake. Nuclear POLLUX ion channels cofunction with Ca2+ channels to generate Ca2+ signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca2+ transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca2+ release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant’s stress-related Ca2+ signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Rebecca L. Roston ◽  
Allison C. Barnes ◽  
Zachary Shomo ◽  
Samantha Surber ◽  
Jennifer Myers

2020 ◽  
Vol 21 (6) ◽  
pp. 2223
Author(s):  
Aya Kitajima-Koga ◽  
Marouane Baslam ◽  
Yuuki Hamada ◽  
Namiko Ito ◽  
Tomoko Taniuchi ◽  
...  

The long-chain acyl-CoA synthetases (LACSs) are involved in lipid synthesis, fatty acid catabolism, and the transport of fatty acids between subcellular compartments. These enzymes catalyze the critical reaction of fatty acyl chains to fatty acyl-CoAs for the triacylglycerol biosynthesis used as carbon and energy reserves. In Arabidopsis, LACSs are encoded by a family of nine genes, with LACS9 being the only member located in the chloroplast envelope membrane. However, the comprehensive role of LACS9 and its contribution to plant metabolism have not been explored thoroughly. In this study, we report on the identification and characterization of LACS9 mutants in rice plants. Our results indicate that the loss-of-function mutations in OsLACS9 affect the architecture of internodes resulting in dwarf plants with large starch granules in the chloroplast, showing the suppression of starch degradation. Moreover, the plastid localization of α-amylase I-1 (AmyI-1)—a key enzyme involved in starch breakdown in plastids—was suppressed in the lacs9 mutant line. Immunological and confocal laser scanning microscopy analyses showed that OsLACS9-GFP is located in the chloroplast envelope in green tissue. Microscopic analysis showed that OsLACS9s interact with each other in the plastid envelope membrane. Furthermore, OsLACS9 is also one of the proteins transported to plastids without a transit peptide or involvement of the Toc/Tic complex system. To identify the plastid-targeting signal of OsLACS9, the transient expression and localization of a series of N-terminal truncated OsLACS9-green fluorescent protein (GFP) fusion proteins were examined. Truncation analyses identified the N-terminal 30 amino acid residues to be required for OsLACS9 plastid localization. Overall, the data in this study provide an advanced understanding of the function of OsLACS9 and its role in starch degradation and plant growth.


2018 ◽  
Vol 62 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Serena Schwenkert ◽  
Sophie Dittmer ◽  
Jürgen Soll

Import of preproteins into chloroplasts is an essential process, requiring two major multisubunit protein complexes that are embedded in the outer and inner chloroplast envelope membrane. Both the translocon of the outer chloroplast membrane (Toc), as well as the translocon of the inner chloroplast membrane (Tic) have been studied intensively with respect to their individual subunit compositions, functions and regulations. Recent advances in crystallography have increased our understanding of the operation of these proteins in terms of their interactions and regulation by conformational switching. Several subdomains of components of the Toc translocon have been studied at the structural level, among them the polypeptide transport-associated (POTRA) domain of the channel protein Toc75 and the GTPase domain of Toc34. In this review, we summarize and discuss the insight that has been gained from these structural analyses. In addition, we present the crystal structure of the Toc64 tetratrico-peptide repeat (TPR) domain in complex with the C-terminal domains of the heat-shock proteins (Hsp) Hsp90 and Hsp70.


Author(s):  
Sarah Mas y mas ◽  
Cécile Giustini ◽  
Jean-Luc Ferrer ◽  
Norbert Rolland ◽  
Gilles Curien ◽  
...  

Quinone oxidoreductases reduce a broad range of quinones and are widely distributed among living organisms. The chloroplast envelope quinone oxidoreductase homologue (ceQORH) fromArabidopsis thalianabinds NADPH, lacks a classical N-terminal and cleavable chloroplast transit peptide, and is transported through the chloroplast envelope membrane by an unknown alternative pathway without cleavage of its internal chloroplast targeting sequence. To unravel the fold of this targeting sequence and its substrate specificity, ceQORH fromA. thalianawas overexpressed inEscherichia coli, purified and crystallized. Crystals of apo ceQORH were obtained and a complete data set was collected at 2.34 Å resolution. The crystals belonged to space groupC2221, with two molecules in the asymmetric unit.


2007 ◽  
Vol 282 (49) ◽  
pp. 35945-35953 ◽  
Author(s):  
Binbin Lu ◽  
Changcheng Xu ◽  
Koichiro Awai ◽  
A. Daniel Jones ◽  
Christoph Benning

Polar lipid trafficking is essential in eukaryotic cells as membranes of lipid assembly are often distinct from final destination membranes. A striking example is the biogenesis of the photosynthetic membranes (thylakoids) in plastids of plants. Lipid biosynthetic enzymes at the endoplasmic reticulum and the inner and outer plastid envelope membranes are involved. This compartmentalization requires extensive lipid trafficking. Mutants of Arabidopsis are available that are disrupted in the incorporation of endoplasmic reticulum-derived lipid precursors into thylakoid lipids. Two proteins affected in two of these mutants, trigalactosyldiacylglycerol 1 (TGD1) and TGD2, encode the permease and substrate binding component, respectively, of a proposed lipid translocator at the inner chloroplast envelope membrane. Here we describe a third protein of Arabidopsis, TGD3, a small ATPase proposed to be part of this translocator. As in the tgd1 and tgd2 mutants, triacylglycerols and trigalactolipids accumulate in a tgd3 mutant carrying a T-DNA insertion just 5′ of the TGD3 coding region. The TGD3 protein shows basal ATPase activity and is localized inside the chloroplast beyond the inner chloroplast envelope membrane. Proteins orthologous to TGD1, -2, and -3 are predicted to be present in Gram-bacteria, and the respective genes are organized in operons suggesting a common biochemical role for the gene products. Based on the current analysis, it is hypothesized that TGD3 is the missing ATPase component of a lipid transporter involving TGD1 and TGD2 required for the biosynthesis of ER-derived thylakoid lipids in Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document