scholarly journals Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes

2021 ◽  
Vol 12 ◽  
Author(s):  
Gaëtan Martin ◽  
Antti J. Rissanen ◽  
Sarahi L. Garcia ◽  
Maliheh Mehrshad ◽  
Moritz Buck ◽  
...  

Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.

Author(s):  
Janusz Golski ◽  
Piotr Pińskwar ◽  
Maria Jezierska-Madziar ◽  
Wojciech Andrzejewski ◽  
Jan Mazurkiewicz ◽  
...  

AbstractOxbow lakes are typical elements of meandering watercourses and are considered to be key components of floodplains of natural rivers. A permanent connection with the river promotes the use of these water bodies by ichthyofauna as spawning grounds, shelter for fry, feeding and wintering grounds. The aim of this study was to determine which rheophilic species inhabit oxbow lakes and how environmental conditions affect habitat selection and fish behavior. Analyses were conducted on six oxbow lakes of the Warta River in the Koło-Poznań section. Fish and water samples were collected for three years, in spring, summer and late autumn. Variation in environmental conditions in the analyzed water bodies results in a considerable diversity of the ichthyofauna, including rheophilic species, in individual seasons of the year. In the course of the study, nine rheophilic fish species were recorded, including four from the lithophilic reproductive guild having the highest environmental requirements. Relative abundance of rheophilic species in the dominance structure ranged from 0 to 100%, depending on the reservoir and seasons, with an average of 7% for all catches. For comparison, their relative abundance in the adjacent parts of the river was 12 and 23%.


Author(s):  
Antti J Rissanen ◽  
Taija Saarela ◽  
Helena Jäntti ◽  
Moritz Buck ◽  
Sari Peura ◽  
...  

ABSTRACT The vertical structuring of methanotrophic communities and its genetic controllers remain understudied in the water columns of oxygen-stratified lakes. Therefore, we used 16S rRNA gene sequencing to study the vertical stratification patterns of methanotrophs in two boreal lakes, Lake Kuivajärvi and Lake Lovojärvi. Furthermore, metagenomic analyses were done to assess the genomic characteristics of methanotrophs in Lovojärvi and a previously studied Lake Alinen Mustajärvi. The methanotroph communities were vertically structured along the oxygen gradient. Alphaproteobacterial methanotrophs preferred oxic water layers, while Methylococcales methanotrophs, consisting of putative novel genera and species, thrived especially at and below the oxic-anoxic interface and showed distinct depth variation patterns, which were not completely predictable by their taxonomic classification. Instead, genomic differences among Methylococcales methanotrophs explained their variable vertical depth patterns. Genes in COG categories L (Replication, recombination and repair) and S (Function unknown) were relatively high in metagenome-assembled-genomes representing Methylococcales thriving clearly below the oxic-anoxic interface, suggesting genetic adaptations for increased stress tolerance enabling living in the hypoxic/anoxic conditions. In contrast, genes in COG category N (Cell motility) were relatively high in metagenome-assembled-genomes of Methylococcales thriving at the oxic-anoxic interface, which suggests genetic adaptations for increased motility at the vertically fluctuating oxic-anoxic interface.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2570-2570
Author(s):  
Alya Heirali ◽  
Bo Chen ◽  
Matthew Wong ◽  
Pierre H.H. Schneeberger ◽  
Victor Rey ◽  
...  

2570 Background: A number of studies have demonstrated that the gut microbiome of responders to immune checkpoint inhibitors (ICI) is compositionally different compared to that of non-responders. However, differences in study design, patient cohorts and bioinformatic analyses make it challenging to identify bacterial species consistently associated with response to ICI across different cohorts and cancer types. Methods: We leveraged the statistical power of mega- and meta-analyses to identify bacterial species consistently associated with response to ICI using data from three published fecal metagenomic studies (Gopalakrishnan et al., Science 2018; Matson et al., Science 2018; Routy et al., Science 2018). Metagenomic data was uniformly processed and analyzed using Metaphlan v2.0. We conducted a two-part modelling approach of bacterial species present in at least 20% of samples to account for both prevalence and relative abundance differences between responders/non-responders. Results: A total of 190 patients (n = 103 responders; n = 87 non-responders) were included from the three studies. Data from Routy et al., was analyzed as subsets based on tumor type for a total of 4 analyzed cohorts. We identified five species including Bacteroides thetaiotaomicron, Clostridium bolteae, Holdemania filiformis, Clostridiaceae bacterium JC118 and Escherichia coli that were concordantly significantly different between responders and non-responders using both meta- and mega-analyses. B. thetaiotaomicron and Clostridium bolteae relative abundance (RA) were independently predictive of non-response to immunotherapy when data sets were combined and analyzed using mega-analyses (AUC 0.59 95% CI 0.51-0.68 and AUC 0.61 95% CI 0.52-0.69, respectively). Conclusions: Despite inter-cohort heterogeneity in tumor type, treatment regimens, and sequencing modalities, meta- and mega analysis of published metagenomic studies identified generalizable bacterial species associated with ICI response or lack thereof. B. thetaiotaomicron and C. bolteae were predictors of non-response to ICI suggesting the clinical potential of narrow spectrum anti-biotics targeting non-response associated bacterial species to improve outcomes in ICI recipients.


mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Sarahi L. Garcia ◽  
Anna J. Szekely ◽  
Christoffer Bergvall ◽  
Martha Schattenhofer ◽  
Sari Peura

ABSTRACT Climate change scenarios anticipate decreased spring snow cover in boreal and subarctic regions. Forest lakes are abundant in these regions and substantial contributors of methane emissions. To investigate the effect of reduced snow cover, we experimentally removed snow from an anoxic frozen lake. We observed that the removal of snow increased light penetration through the ice, increasing water temperature and modifying microbial composition in the different depths. Chlorophyll a and b concentrations increased in the upper water column, suggesting activation of algal primary producers. At the same time, Chlorobiaceae, one of the key photosynthetic bacterial families in anoxic lakes, shifted to lower depths. Moreover, a decrease in the relative abundance of methanotrophs within the bacterial family Methylococcaceae was detected, concurrent with an increase in methane concentration in the water column. These results indicate that decreased snow cover impacts both primary production and methane production and/or consumption, which may ultimately lead to increased methane emissions after spring ice off. IMPORTANCE Small lakes are an important source of greenhouse gases in the boreal zone. These lakes are severely impacted by the winter season, when ice and snow cover obstruct gas exchange between the lake and the atmosphere and diminish light availability in the water column. Currently, climate change is resulting in reduced spring snow cover. A short-term removal of the snow from the ice stimulated algal primary producers and subsequently heterotrophic bacteria. Concurrently, the relative abundance of methanotrophic bacteria decreased and methane concentrations increased. Our results increase the general knowledge of microbial life under ice and, specifically, the understanding of the potential impact of climate change on boreal lakes.


2012 ◽  
Vol 78 (9) ◽  
pp. 3495-3499 ◽  
Author(s):  
Alexandre B. de Menezes ◽  
James E. McDonald ◽  
Heather E. Allison ◽  
Alan J. McCarthy

ABSTRACTThe relative abundance of micromonosporas in the bacterial communities inhabiting cellulose baits, water columns, and sediments of two freshwater lakes was determined by quantitative PCR (qPCR) of reverse-transcribed 16S rRNA.Micromonosporaspp. were shown to be significant members of the active bacterial population colonizing cellulosic substrates in the lake sediment, and their increased prevalence with greater depth was confirmed by enumeration of CFU.


2012 ◽  
Vol 113 (1-3) ◽  
pp. 613-627 ◽  
Author(s):  
Jessica López Bellido ◽  
Tiina Tulonen ◽  
Paula Kankaala ◽  
Anne Ojala

2020 ◽  
Author(s):  
Christine N. Palermo ◽  
Dylan W. Shea ◽  
Steven M. Short

ABSTRACTMetagenomics has enabled rapid increases in virus discovery, in turn permitting revisions of viral taxonomy and our understanding of the ecology of viruses and their hosts. Inspired by recent discoveries of large viruses prevalent in the environment, we re-assessed the longstanding approach of filtering water through small pore-size filters to separate viruses from cells before sequencing. We studied assembled contigs derived from < 0.45 μm and > 0.45 μm size fractions that were annotated as viral to determine the diversity and relative abundances of virus groups from each fraction. Virus communities were vastly different when comparing the size fractions, indicating that analysis of either fraction alone would provide only a partial perspective of environmental viruses. At the level of virus order/family we observed highly diverse and distinct virus communities in the > 0.45 μm size fractions, whereas the < 0.45 μm size fractions were comprised primarily of highly diverse Caudovirales. The relative abundances of Caudovirales for which hosts could be inferred varied widely between size fractions with higher relative abundances of cyanophages in the > 0.45 μm size fractions potentially indicating replication within cells during ongoing infections. Many of the Mimiviridae and Phycodnaviridae, and all Iridoviridae and Poxviridae were detected exclusively in the often disregarded > 0.45 μm size fractions. In addition to observing unique virus communities associated with each size fraction, we detected viruses common to both fractions and argue that these are candidates for further exploration because they may be the product of ongoing or recent lytic events.IMPORTANCEMost studies of aquatic virus communities analyze DNA sequences derived from the smaller, “free virus” size fraction. Our study demonstrates that analysis of virus communities using only the smaller size fraction can lead to erroneously low diversity estimates for many of the larger viruses such as Mimiviridae, Phycodnaviridae, Iridoviridae, and Poxviridae, whereas analyzing only the larger, > 0.45 μm size fraction can lead to underestimates of Caudovirales diversity and relative abundance. Similarly, our data shows that examining only the smaller size fraction can lead to underestimation of virophage and cyanophage relative abundances that could, in turn, cause researchers to assume their limited ecological importance. Given the considerable differences we observed in this study, we recommend cautious interpretations of environmental virus community assemblages and dynamics when based on metagenomic data derived from different size fractions.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3477
Author(s):  
Changzhi Wang ◽  
Pei-Ying Hong

Water reuse is increasingly pursued to alleviate global water scarcity. However, the wastewater treatment process does not achieve full removal of biological contaminants from wastewater, hence microorganisms and their genetic elements can be disseminated into the reclaimed water distribution systems (RWDS). In this study, reclaimed water samples are investigated via metagenomics to assess their bacterial diversity, metagenome-assembled genomes (MAGs) and antibiotic resistance genes (ARGs) at both point of entry (POE) and point of use (POU) in 3 RWDS. The number of shared bacterial orders identified by metagenome was higher at the POE than POU among the three sites, indicating that specific conditions in RWDS can cause further differentiation in the microbial communities at the end of the distribution system. Two bacterial orders, namely Rhizobiales and Sphingomonadales, had high replication rates in two of the examined RWDS (i.e., site A and B), and were present in higher relative abundance in POU than at POE. In addition, MAG and ARG relative abundance exhibited a strong correlation (R2 = 0.58) in POU, indicating that bacteria present in POU may have a high incidence of ARG. Specifically, resistance genes associated with efflux pump mechanisms (e.g., adeF and qacH) increased in its relative abundance from POU to POE at two of the RWDS (i.e., site A and B). When correlated with the water quality data that suggests a significantly lower dissolved organic carbon (DOC) concentration at site D than the other two RWDS, the metagenomic data suggest that low DOC is needed to maintain the biological stability of reclaimed water along the distribution network.


2012 ◽  
Vol 69 (2) ◽  
pp. 223-234 ◽  
Author(s):  
Samuel Shephard ◽  
Tak Fung ◽  
Jennifer E. Houle ◽  
Keith D. Farnsworth ◽  
David G. Reid ◽  
...  

Abstract Shephard, S., Fung, T., Houle, J. E., Farnsworth, K. D., Reid, D. G., and Rossberg, A. G. 2012. Size-selective fishing drives species composition in the Celtic Sea. – ICES Journal of Marine Science, 69: 223–234. Fishing alters community size structure by selectively removing larger individual fish and by changing the relative abundance of different-sized species. To assess the relative importance of individual- and species-level effects, two indices of fish community structure were compared, the relative abundance of large fish individuals (large fish indicator, LFI) and the relative abundance of large fish species (large species indicator, LSI). The two indices were strongly correlated for empirical data from the Celtic Sea and for data from simulated model communities, suggesting that much of the variability in the LFI is caused by shifts in the relative abundance of species (LSI). This correlation is explained by the observation that most of the biomass of a given species is spread over few length classes, a range spanning the factor 2 of individual length, such that most species contributed predominantly to either the small or the large component of the LFI. The results suggest that the effects of size-selective fishing in the Celtic Sea are mediated mainly through changes in community composition.


2021 ◽  
Author(s):  
Kelly A. Mulholland ◽  
Calvin L. Keeler

Abstract BackgroundThe complete characterization of a microbiome is critical in elucidating the complex ecology of the microbial composition within healthy and diseased animals. Many microbiome studies characterize only the bacterial component, for which there are several well-developed sequencing methods, bioinformatics tools and databases available. The lack of comprehensive bioinformatics workflows and databases have limited efforts to characterize the other components existing in a microbiome. BiomeSeq is a tool for the analysis of the complete animal microbiome using metagenomic sequencing data. With its comprehensive workflow and customizable parameters and microbial databases, BiomeSeq can rapidly quantify the viral, fungal, bacteriophage and bacterial components of a sample and produce informative tables for analysis. ResultsSimulated datasets were constructed, which contained known abundances of microbial sequences, and several performance metrics were analyzed, including correlation of predicted abundance with known abundance, root mean square error and rate of speed. BiomeSeq demonstrated high precision (average of 99.52%) and sensitivity (average of 93.01%). BiomeSeq was employed in detecting and quantifying the respiratory microbiome of a commercial poultry broiler flock throughout its grow-out cycle from hatching to processing and successfully processed 780 million reads. For each microbial species detected, BiomeSeq calculated the normalized abundance, percent relative abundance, and coverage as well as the diversity for each sample. Rate of speed for each step in the pipeline, precision and accuracy were calculated to examine BiomeSeq’s performance using in silico sequencing datasets. When compared to bacterial results generated by the commonly used 16S rRNA sequencing method, BiomeSeq detected the same most abundant bacteria, including Gallibacterium, Corynebacterium and Staphylococcus, as well as several additional species. ConclusionsBiomeSeq provides for the detection and quantification of the microbiome from next-generation metagenomic sequencing data. This tool is implemented into a user-friendly container that requires one command and generates a table containing taxonomical information for each microbe detected. It also determines normalized abundance, percent relative abundance, genome coverage and sample diversity calculations for each sample.


Sign in / Sign up

Export Citation Format

Share Document