endogenous induction
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 1)

Biology Open ◽  
2021 ◽  
Author(s):  
Whitney Thiel ◽  
Emma J. Esposito ◽  
Anna P. Findley ◽  
Zachary I. Blume ◽  
Diana M. Mitchell

Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Lili Xu ◽  
Guangqing Xiang ◽  
Qinghua Sun ◽  
Yong Ni ◽  
Zhongxin Jin ◽  
...  

Abstract The signal molecules melatonin and ethylene play key roles in abiotic stress tolerance. The interplay between melatonin and ethylene in regulating salt tolerance and the underlying molecular mechanism of this interplay remain unclear. Here, we found that both melatonin and 1-aminocyclopropane-1-carboxylic acid (ACC, a precursor of ethylene) enhanced the tolerance of grapevine to NaCl; additionally, ethylene participated in melatonin-induced salt tolerance. Further experiments indicated that exogenous treatment and endogenous induction of melatonin increased the ACC content and ethylene production in grapevine and tobacco plants, respectively. The expression of MYB108A and ACS1, which function as a transcription factor and a key gene involved in ethylene production, respectively, was strongly induced by melatonin treatment. Additionally, MYB108A directly bound to the promoter of ACS1 and activated its transcription. MYB108A expression promoted ACC synthesis and ethylene production by activating ACS1 expression in response to melatonin treatment. The suppression of MYB108A expression partially limited the effect of melatonin on the induction of ethylene production and reduced melatonin-induced salt tolerance. Collectively, melatonin promotes ethylene biosynthesis and salt tolerance through the regulation of ACS1 by MYB108A.


2012 ◽  
Vol 66 (4) ◽  
pp. 392-397 ◽  
Author(s):  
Hao-Wei Chang ◽  
Tsung-Yeh Yang ◽  
Guang-Sheng Lei ◽  
Kin-Fu Chak

2008 ◽  
Vol 191 (3) ◽  
pp. 701-712 ◽  
Author(s):  
Christina Lengsfeld ◽  
Stefan Schönert ◽  
Renate Dippel ◽  
Winfried Boos

ABSTRACTMalT is the central transcriptional activator of allmalgenes inEscherichia coli. Its activity is controlled by the inducer maltotriose. It can be inhibited by the interaction with certain proteins, and its expression can be controlled. We report here a novel aspect ofmalgene regulation: the effect of cytoplasmic glucose and glucokinase (Glk) on the activity and the expression of MalT. Amylomaltase (MalQ) is essential for the metabolism of maltose. It forms maltodextrins and glucose from maltose or maltodextrins. We found that glucose above a concentration of 0.1 mM blocked the activity of the enzyme.malQmutants when grown in the absence of maltodextrins are endogenously induced by maltotriose that is derived from the degradation of glycogen. Therefore, the fact thatglk malQ+mutants showed elevatedmalgene expression finds its explanation in the reduced ability to remove glucose from MalQ-catalyzed maltodextrin formation and is caused by a metabolically induced MalQ−phenotype. However, even in mutants lacking glycogen, Glk controls endogenous induction. We found that overexpressed Glk due to its structural similarity with Mlc, the repressor ofmalT, binds to the glucose transporter (PtsG), releasing Mlc and thus increasingmalTrepression. In addition, even in mutants lacking Mlc (and glycogen), the overexpression ofglkleads to a reduction inmalgene expression. We interpret this repression by a direct interaction of Glk with MalT concomitant with MalT inhibition. This repression was dependent on the presence of either maltodextrin phosphorylase or amylomaltase and led to the inactivation of MalT.


2005 ◽  
Vol 187 (24) ◽  
pp. 8332-8339 ◽  
Author(s):  
Renate Dippel ◽  
Tobias Bergmiller ◽  
Alex Böhm ◽  
Winfried Boos

ABSTRACT Strains of Escherichia coli lacking MalQ (maltodextrin glucanotransferase or amylomaltase) are endogenously induced for the maltose regulon by maltotriose that is derived from the degradation of glycogen (glycogen-dependent endogenous induction). A high level of induction was dependent on the presence of MalP, maltodextrin phosphorylase, while expression was counteracted by MalZ, maltodextrin glucosidase. Glycogen-derived endogenous induction was sensitive to high osmolarity. This osmodependence was caused by MalZ. malZ, the gene encoding this enzyme, was found to be induced by high osmolarity even in the absence of MalT, the central regulator of all mal genes. The osmodependent expression of malZ was neither RpoS nor OmpR dependent. In contrast, the malPQ operon, whose expression was also increased at a high osmolarity, was partially dependent on RpoS. In the absence of glycogen, residual endogenous induction of the mal genes that is sensitive to increasing osmolarity can still be observed. This glycogen-independent endogenous induction is not understood, and it is not affected by altering the expression of MalP, MalQ, and MalZ. In particular, its independence from MalZ suggests that the responsible inducer is not maltotriose.


Author(s):  
U. Bläsi ◽  
R.E. Harkness ◽  
A. Witte ◽  
G. Halfmann ◽  
W. Lubitz

Sign in / Sign up

Export Citation Format

Share Document