scholarly journals Modulation of retinoid-X-receptors differentially regulates expression of apolipoprotein genes apoc1 and apoeb by zebrafish microglia

Biology Open ◽  
2021 ◽  
Author(s):  
Whitney Thiel ◽  
Emma J. Esposito ◽  
Anna P. Findley ◽  
Zachary I. Blume ◽  
Diana M. Mitchell

Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 649
Author(s):  
Emma Sicherre ◽  
Anne-Laure Favier ◽  
Diane Riccobono ◽  
Krisztina Nikovics

Advances in understanding tissue regenerative mechanisms require the characterization of in vivo macrophages as those play a fundamental role in this process. This characterization can be approached using the immuno-fluorescence method with widely studied and used pan-markers such as CD206 protein. This work investigated CD206 expression in an irradiated-muscle pig model using three different antibodies. Surprisingly, the expression pattern during immunodetection differed depending on the antibody origin and could give some false results. False results are rarely described in the literature, but this information is essential for scientists who need to characterize macrophages. In this context, we showed that in situ hybridization coupled with hybridization-chain-reaction detection (HCR) is an excellent alternative method to detect macrophages in situ.


2019 ◽  
Vol 43 (24) ◽  
pp. 9458-9465
Author(s):  
Xiquan Yue ◽  
Lihong Su ◽  
Xu Chen ◽  
Junfeng Liu ◽  
Longpo Zheng ◽  
...  

The strategy is based on small molecule-mediated hybridization chain reaction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Li ◽  
Wenting Yu ◽  
Jiaojiao Zhang ◽  
Yuhang Dong ◽  
Xiaohui Ding ◽  
...  

AbstractDNA nanostructures have been demonstrated as promising carriers for gene delivery. In the carrier design, spatiotemporally programmable assembly of DNA under nanoconfinement is important but has proven highly challenging due to the complexity–scalability–error of DNA. Herein, a DNA nanotechnology-based strategy via the cascade hybridization chain reaction (HCR) of DNA hairpins in polymeric nanoframework has been developed to achieve spatiotemporally programmable assembly of DNA under nanoconfinement for precise siRNA delivery. The nanoframework is prepared via precipitation polymerization with Acrydite-DNA as cross-linker. The potential energy stored in the loops of DNA hairpins can overcome the steric effect in the nanoframework, which can help initiate cascade HCR of DNA hairpins and achieve efficient siRNA loading. The designer tethering sequence between DNA and RNA guarantees a triphosadenine triggered siRNA release specifically in cellular cytoplasm. Nanoframework provides stability and ease of functionalization, which helps address the complexity–scalability–error of DNA. It is exemplified that the phenylboronate installation on nanoframework enhanced cellular uptake and smoothed the lysosomal escape. Cellular results show that the siRNA loaded nanoframework down-regulated the levels of relevant mRNA and protein. In vivo experiments show significant therapeutic efficacy of using siPLK1 loaded nanoframework to suppress tumor growth.


Development ◽  
1997 ◽  
Vol 124 (18) ◽  
pp. 3575-3586 ◽  
Author(s):  
D. Meyer ◽  
T. Yamaai ◽  
A. Garratt ◽  
E. Riethmacher-Sonnenberg ◽  
D. Kane ◽  
...  

Neuregulin (also known as NDF, heregulin, ARIA, GGF or SMDF), induces cell growth and differentiation. Biological effects of neuregulin are mediated by members of the erbB family of tyrosine kinase receptors. Three major neuregulin isoforms are produced from the gene, which differ substantially in sequence and in overall structure. Here we use in situ hybridization with isoform-specific probes to illustrate the spatially distinct patterns of expression of the isoforms during mouse development. Ablation of the neuregulin gene in the mouse has demonstrated multiple and independent functions of this factor in development of both the nervous system and the heart. We show here that targeted mutations that affect different isoforms result in distinct phenotypes, demonstrating that isoforms can take over specific functions in vivo. Type I neuregulin is required for generation of neural crest-derived neurons in cranial ganglia and for trabeculation of the heart ventricle, whereas type III neuregulin plays an important role in the early development of Schwann cells. The complexity of neuregulin functions in development is therefore due to independent roles played by distinct isoforms.


1992 ◽  
Vol 6 (3) ◽  
pp. 215-221 ◽  
Author(s):  
B. Delord ◽  
M. Ottmann ◽  
M.-H. Schrive ◽  
J.-M. Ragnaud ◽  
J.-M. Seigneurin ◽  
...  

2012 ◽  
Vol 48 (100) ◽  
pp. 12207 ◽  
Author(s):  
Jun Zhou ◽  
Mingdi Xu ◽  
Dianping Tang ◽  
Zhuangqiang Gao ◽  
Juan Tang ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Jian Zhou ◽  
Xiujuan Duan ◽  
Jibing Wang ◽  
Yunhong Feng ◽  
Jiangyong Yuan

Objective. This study is aimed at determining the expression and function of the GASL1 and PI3K/AKT pathways in isoproterenol- (ISO-) induced heart failure (HF). To determine the moderating effect of valsartan (VAL) on the progression of ISO-induced HF and to elucidate the related mechanism. Materials and Methods. First, in in vivo experiment, we examined the effect of VAL on cardiac function in rats with ISO-induced HF. Similarly, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of VAL on ISO-treated rat primary cardiomyocytes. Then, si-GASL1-transfected primary cardiomyocytes were constructed and Ad-si-GASL1 was injected through rat tail vein to achieve the effect of lowering GASL1 expression, so as to investigate the role of GASL1 in VAL’s treatment of ISO-induced HF. Results. In ISO-induced HF rat models, the GASL1 decreased while PI3K and p-AKT expressions were abnormally elevated and cardiac function deteriorated, and VAL was able to reverse these changes. In primary cardiomyocytes, ISO induces apoptosis of cardiomyocytes, and expression of GASL1 decreased while PI3K and p-AKT were abnormally elevated, which can be reversed by VAL. The transfection of primary cardiomyocytes with si-GASL1 confirmed that GASL1 affected the expression of PI3K, p-AKT, and the apoptosis of primary cardiomyocytes. Rat myocardium injected with Ad-si-GASL1 was found to aggravate the cardiac function improved by VAL. Conclusions. This study was the first to confirm that VAL improves ISO-induced HF by regulating the PI3K/AKT pathway through GASL1. And this study demonstrated a significant correlation between HF, VAL, GASL1, and the PI3K/AKT pathway.


Sign in / Sign up

Export Citation Format

Share Document