scholarly journals Cardioprotective effects of alantolactone on isoproterenol-induced cardiac injury and cobalt chloride-induced cardiomyocyte injury

2022 ◽  
Vol 36 ◽  
pp. 205873842110519
Author(s):  
Miaomiao Liu ◽  
Panpan Liu ◽  
Bin Zheng ◽  
Yu Liu ◽  
Li Li ◽  
...  

Objectives Alantolactone (AL) is a compound extracted from the roots of Inula Racemosa that has shown beneficial effects in cardiovascular disease. However, the cardioprotective mechanism of AL against hypoxic/ischemic (H/I) injury is still unclear. This research aimed to determine AL’s ability to protect the heart against isoproterenol (ISO)-induced MI injury in vivo and cobalt chloride (CoCl2) induced H/I injury in vitro. Methods Electrocardiography (ECG), lactate dehydrogenase (LDH), creatine kinase (CK), and cardiac troponin I (cTnI) assays in addition to histological analysis of the myocardium were used to investigate the effects of AL in vivo. Influences of AL on L-type Ca2+ current (ICa-L) in isolated rat myocytes were observed by the patch-clamp technique. Furthermore, cell viability, apoptosis, oxidative stress injury, mitochondrial membrane potential, and intracellular Ca2+ concentration were examined in vitro. Results The results indicated that AL treatment ameliorated the morphological and ECG changes associated with MI, and decreased levels of LDH, CK, and cTnI. Furthermore, pretreatment with AL elevated antioxidant enzyme activity and suppressed ROS production. AL prevented H/I-induced apoptosis, mitochondria damage, and calcium overload while reducing ICa-L in a concentration and time dependent fashion. The 50% inhibiting concentration (IC50) and maximal inhibitory effect (Emax) of AL were 17.29 μmol/L and 57.73 ± 1.05%, respectively. Conclusion AL attenuated MI-related injury by reducing oxidative stress, apoptosis, calcium overload, and mitochondria damage. These cardioprotective effects may be related to the direct inhibition of ICa-L.

PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Yan ◽  
Si-Chi Xu ◽  
Chun-Yan Kong ◽  
Xiao-Yang Zhou ◽  
Zhou-Yan Bian ◽  
...  

Background. Oxidative stress, inflammation and cardiac apoptosis were closely involved in doxorubicin (DOX)-induced cardiac injury. Piperine has been reported to suppress inflammatory response and pyroptosis in macrophages. However, whether piperine could protect the mice against DOX-related cardiac injury remain unclear. This study aimed to investigate whether piperine inhibited DOX-related cardiac injury in mice. Methods. To induce DOX-related acute cardiac injury, mice in DOX group were intraperitoneally injected with a single dose of DOX (15 mg/kg). To investigate the protective effects of piperine, mice were orally treated for 3 weeks with piperine (50 mg/kg, 18:00 every day) beginning two weeks before DOX injection. Results. Piperine treatment significantly alleviated DOX-induced cardiac injury, and improved cardiac function. Piperine also reduced myocardial oxidative stress, inflammation and apoptosis in mice with DOX injection. Piperine also improved cell viability, and reduced oxidative damage and inflammatory factors in cardiomyocytes. We also found that piperine activated peroxisome proliferator-activated receptor-γ (PPAR-γ), and the protective effects of piperine were abolished by the treatment of the PPAR-γ antagonist in vivo and in vitro. Conclusions. Piperine could suppress DOX-related cardiac injury via activation of PPAR-γ in mice.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Peng Wang ◽  
Qian Luo ◽  
Hui Qiao ◽  
Hui Ding ◽  
Yonggang Cao ◽  
...  

Chronic alcohol consumption causes hippocampal neuronal impairment, which is associated with oxidative stress and apoptosis. Carvacrol is a major monoterpenic phenol found in essential oils from the family Labiatae and has antioxidative stress and antiapoptosis actions. However, the protective effects of carvacrol in ethanol-induced hippocampal neuronal impairment have not been fully understood. We explored the neuroprotective effects of carvacrol in vivo and in vitro. Male C57BL/6 mice were exposed to 35% ethanol for 4 weeks to establish ethanol model in vivo, and hippocampal neuron injury was simulated by 200 mM ethanol in vitro. Morris water maze test was performed to evaluate the cognitive dysfunction. The oxidative stress injury of hippocampal neurons was evaluated by measuring the levels of oxidative stress biomarkers. Histopathological examinations and western blot were performed to evaluate the apoptosis of neurons. The results showed that carvacrol attenuates the cognitive dysfunction, oxidative stress, and apoptosis of the mice treated with ethanol and decreases hippocampal neurons apoptosis induced by ethanol in vitro. In addition, western blot analysis revealed that carvacrol modulates the protein expression of Bcl-2, Bax, caspase-3, and p-ERK, without influence of p-JNK and p-p38. Our results suggest that carvacrol alleviates ethanol-mediated hippocampal neuronal impairment by antioxidative and antiapoptotic effects.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Lei Zhang ◽  
Cundong Fan ◽  
Hua-Chen Jiao ◽  
Qian Zhang ◽  
Yue-Hua Jiang ◽  
...  

Calycosin (CAL) is the main active component present in Astragalus and reportedly possesses diverse pharmacological properties. However, the cardioprotective effect and underlying mechanism of CAL against doxorubicin- (DOX-) induced cardiotoxicity need to be comprehensively examined. Herein, we aimed to investigate whether the cardioprotective effects of CAL are related to its antipyroptotic effect. A cardiatoxicity model was established by stimulating H9c2 cells and C57BL/6J mice using DOX. In vitro, CAL increased H9c2 cell viability and decreased DOX-induced pyroptosis via NLRP3, caspase-1, and gasdermin D signaling pathways in a dose-dependent manner. In vivo, CAL-DOX cotreatment effectively suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis via the same molecular mechanism. Next, we used nigericin (Nig) and NLRP3 forced overexpression to determine whether CAL imparts antipyroptotic effects by inhibiting the NLRP3 inflammasome in vitro. Furthermore, CAL suppressed DOX-induced mitochondrial oxidative stress injury in H9c2 cells by decreasing the generation of reactive oxygen species and increasing mitochondrial membrane potential and adenosine triphosphate. Likewise, CAL attenuated the DOX-induced increase in malondialdehyde content and decreased superoxide dismutase and glutathione peroxidase activities in H9c2 cells. In vivo, CAL afforded a protective effect against DOX-induced cardiac injury by improving myocardial function, inhibiting brain natriuretic peptide, and improving the changes of the histological morphology of DOX-treated mice. Collectively, our findings confirmed that CAL alleviates DOX-induced cardiotoxicity and pyroptosis by inhibiting NLRP3 inflammasome activation in vivo and in vitro.


Author(s):  
Guocheng Ren ◽  
Qiujie Zhou ◽  
Meili Lu ◽  
Hongxin Wang

The aim of the current study was to evaluate whether rosuvastatin was effective in attenuating cardiac injury in lipopolysaccharide(LPS)-challenged mice and H9C2 cells and identify the underlying mechanisms, focusing on the NLRP3/TLR4 pathway. Cardiac injury, cardiac function, apoptosis, oxidative stress, inflammatory response and the NLRP3/TLR4 pathway were evaluated in both in vivo and in vitro studies. LPS-induced cardiomyocytes injury was markedly attenuated by rosuvastatin treatment. Apoptosis was clearly ameliorated in myocardial tissue and H9C2 cells cotreated with rosuvastatin. In addition, excessive oxidative stress was present, as indicated by increases in MDA content, NADPH activity and ROS production and decreased SOD activity after LPS challenge. Rosuvastatin improved all the indicators of oxidative stress, with a similar effect to NAC(ROS scavenger). Notably, LPS-exposed H9C2 cells and mice showed significant NLRP3 and TLR4/NF-κB pathway activation. Administration of rosuvastatin reduced the increases in expression of NLRP3, ASC, pro-caspase-1, TLR4, and p65 and decreased the contents of TNF-α, IL-1β, IL-18 and IL-6, with a similar effect as MCC950 (NLRP3 inhibitor). In conclusion, inhibition of the inflammatory response and oxidative stress contributes to cardioprotection of rosuvastatin on cardiac injury induced by LPS, and the effect of rosuvastatin was achieved by inactivation of the NF-κB/NLRP3 pathway


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Min Tang ◽  
Lei Zhang ◽  
Zheng Zhu ◽  
Ran Li ◽  
Shangqian Wang ◽  
...  

Background. Di-N-butylphthalate (DBP) is a kind of unique endocrine toxicity linked to hormonal disruptions that affects the male reproductive system and has given rise to more and more attention. However, the mechanism of DBP-induced testicular injury remains unclear. Here, the objective of this study was to investigate the potential molecular mechanism of miR-506-3p in DBP-induced rat testicular oxidative stress injury via ANXA5 (Annexin A5)/Nrf2/HO-1 signaling pathway. Methods. In vivo, a total of 40 adolescent male rats were treated from 2 weeks with 800 mg/kg/day of DBP in 1 mL/kg corn oil administered daily by oral gavage. Among them, some rats were also injected subcutaneously with 2 nmol agomir-506-3p and/or 10 nmol recombinant rat ANXA5. The pathomorphological changes of testicular tissue were assessed by histological examination, and the antioxidant factors were evaluated. Subsequently, ANXA5, Nrf2, and its dependent antioxidant enzymes, such as HO-1, NQO1, and GST, were detected by Western blotting or immunohistochemical staining. In vitro, TM3 cells (Leydig cells) were used to detect the cell activity by CCK-8 and the transfection in the DBP-treated group. Results. Differentially expressed miRNAs between the DBP-treated and normal rats were analyzed, and qRT-PCR showed miR-506-3p was highly expressed in testicular tissues of the DBP-treated rats. DBP-treated rats presented severe inflammatory infiltration, increased abnormal germ cells, and missed cell layers frequently existed in seminiferous tubules, resulted in oxidative stress and decreased testicular function. Meanwhile, upregulation of miR-506-3p aggravated the above changes. In addition, miR-506-3p directly bound to ANXA5, and overexpression of miR-506-3p could reduce the ANXA5 expression and also decrease the protein levels of Nrf2/HO-1 signaling pathway. Additionally, we found that recombinant rat ANXA5 reversed the DBP-treated testicular oxidative stress promoting injury of miR-506-3p in rats. In vivo results were reproduced in in vitro experiments. Conclusions. This study provided evidence that miR-506-3p could aggravate the DBP-treated testicular oxidative stress injury in vivo and in vitro by inhibiting ANXA5 expression and downregulating Nrf2/HO-1 signaling pathway, which might provide novel understanding in DBP-induced testicular injury therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhang Yifan ◽  
Ning Benxiang ◽  
Xu Zheng ◽  
Xu Luwei ◽  
Zhou Liuhua ◽  
...  

Objective. To investigate the role of inflammatory reactions and oxidative stress injury in the mechanisms of ceftriaxone calcium crystal-induced acute kidney injury (AKI) both in vivo and in vitro. Methods. Male Sprague Dawley rats were randomly divided into five groups of ten each according to different concentrations of ceftriaxone and calcium. Based on the levels of serum creatinine (Scr) and blood urea nitrogen (BUN), the AKI group was chosen for the subsequent experiments. Kidney histological examination and immunohistochemistry were performed. The expression of NLRP3 and IL-1β protein and the concentrations of oxidative stress markers such as ROS, MDA, and H2O2 in kidney tissues were estimated. In parallel, HK-2 human renal proximal tubule cells were exposed to ceftriaxone calcium crystals. The mRNA expression levels of NLRP3 and IL-1β and the concentrations of oxidative stress markers were evaluated. Finally, cell viability and rat survival were also assessed. Results. The results showed that significantly increased Scr and BUN levels, consistent with morphological changes and kidney stones, were found in the rats that received the highest concentration of ceftriaxone (1000 mg/kg) combined with calcium (800 mg/kg). The activation of the NLRP3 inflammasome axis and the marked elevation of MDA, H2O2, and ROS levels were observed both in vivo and in vitro. High expression of Nrf2, HO-1, and NQO1 was also documented. In addition, cell apoptosis and rat mortality were promoted by ceftriaxone calcium crystals. Conclusions. Notably, we found that ceftriaxone-induced urolithiasis was associated with a high risk of AKI and NLRP3-mediated inflammasome and oxidative stress injury were of major importance in the pathogenesis.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Jing Zeng ◽  
Long Zhu ◽  
Jing Liu ◽  
Tao Zhu ◽  
Zhaohui Xie ◽  
...  

Previous studies have shown that metformin not only is a hypoglycemic agent but also has neuroprotective effects. However, the mechanism of action of metformin in ischemic stroke is unclear. Oxidative stress is an important factor in the pathogenesis of cerebral ischemia-reperfusion injury. It has been reported that metformin is associated with stroke risk in the clinical population. This study is aimed at investigating the effect and mechanism of metformin in an experimental model of oxidative stress induced by ischemia/reperfusion (I/R) in vivo and oxygen glucose deprivation/reperfusion (OGD/R) in vitro. Metformin (100, 200, and 300 mg/kg) was administered intraperitoneally immediately after induction of cerebral ischemia. The indicators of oxidative stress selected were antioxidant enzyme activities of catalase, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and glutathione peroxidation enzyme (GSHPx). First, we demonstrated that metformin can significantly alleviate acute and chronic cerebral I/R injury and it has a strong regulatory effect on stroke-induced oxidative stress. It can reduce the elevated activities of MDA and NO and increase the levels of GSHPx and SOD in the cerebrum of mice and N2a cells exposed to I/R. Furthermore, real-time PCR and western blot were used to detect the expression of long noncoding RNA H19 (lncRNA-H19), microRNA-148a-3p (miR-148a-3p), and Rho-associated protein kinase 2 (Rock2). The direct interaction of lncRNA-H19, miR-148a-3p, and Rock2 was tested using a dual luciferase reporter assay. lncRNA-H19 altered OGD/R-induced oxidative stress by modulating miR-148a-3p to increase Rock2 expression. The expression of lncRNA-H19 and Rock2 could be downregulated with metformin in vivo and in vitro. In conclusion, our study confirmed that metformin exerts neuroprotective effects by regulating ischemic stroke-induced oxidative stress injury via the lncRNA-H19/miR-148a-3p/Rock2 axis. These results provide new evidence that metformin may represent a potential treatment for stroke-related brain injury.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yuan Wang ◽  
Qiang Wang ◽  
Jie Li ◽  
Gang Lu ◽  
Zhibin Liu

Background/Aims. Alzheimer’s disease (AD) is the most common neurodegenerative disease, and all researchers working in this field agree that oxidative stress is intimately associated with Alzheimer disease. In this study, we hypothesized that glutamine (Gln) offers protection against oxidative stress injury in SAMP8 mice as well as the underlying mechanism. Methods. The SAMP8 mice received glutamine intragastrically for 8 consecutive weeks to evaluate the protective effect of glutamine on oxidative stress in AD mice involving Wnt3a/β-catenin signaling pathway. In addition, rat pheochromocytoma tumor cell line PC12 was pretreated with 32 μM glutamine for 2 h followed by 24 h incubation with 40 μM Aβ25-35 to obtain in vitro data. Results. In vivo the administration of glutamine was found to ameliorate behavioral deficits and neuron damage, increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-XP) activity, reduce the malondialdehyde (MDA) content, and activate the Wnt3a/β-catenin signaling pathway in SAMP8 mice. In vitro glutamine treatment decreased the toxicity of Aβ25-35 on PC12 cells and prevented apoptosis. Additionally, glutamine treatment increased SOD and GSH-XP activity and decreased MDA content and increased Wnt3a and β-catenin protein levels. Interestingly, the DKK-1 (Wnt3a/β-catenin pathway inhibitor) decreased the antioxidant capacity of glutamine in Aβ25-35-treated PC12 cells. Conclusion. This study suggests that glutamine could protect against oxidative stress-induced injury in AD mice via the Wnt3a/β-catenin signaling pathway.


2021 ◽  
Vol 22 (14) ◽  
pp. 7324
Author(s):  
Nagarajan Maharajan ◽  
Chitra Devi Ganesan ◽  
Changjong Moon ◽  
Chul-Ho Jang ◽  
Won-Keun Oh ◽  
...  

Increased oxidative stress is a crucial factor for the progression of cellular senescence and aging. The present study aimed to investigate the effects of licochalcone D (Lico D) on oxidative stress-induced senescence, both in vitro and in vivo, and explore its potential mechanisms. Hydrogen peroxide (200 µM for double time) and D-galactose (D-Gal) (150 mg/kg) were used to induce oxidative stress in human bone marrow-mesenchymal stem cells (hBM-MSCs) and mice, respectively. We performed the SA-β-gal assay and evaluated the senescence markers, activation of AMPK, and autophagy. Lico D potentially reduced oxidative stress-induced senescence by upregulating AMPK-mediated activation of autophagy in hBM-MSCs. D-Gal treatment significantly increased the expression levels of senescence markers, such as p53 and p21, in the heart and hippocampal tissues, while this effect was reversed in the Lico D-treated animals. Furthermore, a significant increase in AMPK activation was observed in both tissues, while the activation of autophagy was only observed in the heart tissue. Interestingly, we found that Lico D significantly reduced the expression levels of the receptors for advanced glycation end products (RAGE) in the hippocampal tissue. Taken together, our findings highlight the antioxidant, anti-senescent, and cardioprotective effects of Lico D and suggest that the activation of AMPK and autophagy ameliorates the oxidative stress-induced senescence.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Heqin Zhan ◽  
Feng Huang ◽  
Qian Niu ◽  
Mingli Jiao ◽  
Xumeng Han ◽  
...  

Recent studies reported that miR-128 was differentially expressed in cardiomyocytes in response to pathologic stress. However, its function and mechanism remain to be fully elucidated. The aim of the present study was to investigate the role of miR-128 in chronic angiotensin II (Ang II) infusion-induced cardiac remodeling and its underlying mechanism. The cardiac remodeling and heart failure in vivo were established in C57BL/6 mice by chronic subcutaneous Ang II delivery. Knocking down miR-128 was conducted in the hearts of the mice by intravenous injection of HBAAV2/9-miR-128-GFP sponge (miR-128 inhibitor). In vitro experiments of cardiac hypertrophy, apoptosis, and aberrant autophagy were performed in cultured cells after Ang II treatment or transfection of miR-128 antagomir. Our results showed that chronic Ang II delivery for 28 days induced cardiac dysfunction, hypertrophy, fibrosis, apoptosis, and oxidative stress in the mice, while the miR-128 expression was notably enhanced in the left ventricle. Silencing miR-128 in the hearts of mice ameliorated Ang II-induced cardiac dysfunction, hypertrophy, fibrosis apoptosis, and oxidative stress injury. Moreover, Ang II induced excessive autophagy in the mouse hearts, which was suppressed by miR-128 knockdown. In cultured cells, Ang II treatment induced a marked elevation in the miR-128 expression. Downregulation of miR-128 in the cells by transfection with miR-128 antagomir attenuated Ang II-induced apoptosis and oxidative injury probably via directly targeting on the SIRT1/p53 pathway. Intriguingly, we found that miR-128 inhibition activated PIK3R1/Akt/mTOR pathway and thereby significantly damped Ang II-stimulated pathological autophagy in cardiomyocytes, which consequently mitigated cell oxidative stress and apoptosis. In conclusion, downregulation of miR-128 ameliorates Ang II-provoked cardiac oxidative stress, hypertrophy, fibrosis, apoptosis, and dysfunction in mice, likely through targeting on PIK3R1/Akt/mTORC1 and/or SIRT1/p53 pathways. These results indicate that miR-128 inhibition might be a potent therapeutic strategy for maladaptive cardiac remodeling and heart failure.


Sign in / Sign up

Export Citation Format

Share Document