center body
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Author(s):  
A. Ciani ◽  
J. P. Wood ◽  
M. Maurer ◽  
B. Bunkute ◽  
D. Pennell ◽  
...  

Abstract Modern gas turbines call for an ultra-high firing temperature and fuel flexibility while keeping emissions at very low levels. Sequential combustion has demonstrated its advantages toward such ambitious targets. A sequential combustion system, as deployed in the GT26 and GT36 engines, consists of two burners in series, the first one optimized to provide the optimum boundary condition for the second one, the sequential burner. This is the key component for the achievement of the required combustor performance dictated by F and H class engines, including versatile and robust operation with hydrogen-based fuels. This paper describes the key development considerations used to establish a new sequential burner surpassing state-of-the-art hardware in terms of emission reduction, fuel flexibility and load flexibility. A novel multi-point injector geometry was deployed based on combustion and fluid dynamic considerations to maximize fuel / air mixing quality at minimum pressure loss. Water channel experiments complemented by CFD describe the evolution of the fuel / air mixture fraction through the mixing section and combustion chamber to enable operation with major NOx reduction. Furthermore, Laser Doppler Anemometry and Laser Induced Fluorescence were used to best characterize the interaction between hot-air and fuel and the fuel / air mixing in the most critical regions of the system. To complete the overview of the key development steps, mechanical integrity and manufacturing considerations based on additive manufacturing are also presented. The outcome of 1D, CFD and fluid dynamic experimental findings were then validated through full-scale, full-pressure combustion tests. These demonstrate the novel Center Body Burner is enabling operation at lower emissions, both at part load and full load conditions. Furthermore, the validation of the burner was also extended to hydrogen-based fuels with a variety of hydrogen / natural gas blends.


Author(s):  
Thomas Ludwig Kaiser ◽  
Kilian Oberleithner ◽  
Laurent Selle ◽  
Thierry Poinsot

Abstract Shape optimization with respect to the suppression or enhancement of dynamical flow structures is an important topic in combustion research and beyond. In this paper, we investigate the flow in an industrial fuel injection system by experimental means, as well as large eddy simulation (LES) and linear stability analysis (LSA) for two configurations of the swirler. In the first configuration, the reference geometry, a precessing vortex core (PVC) occurs. In the second configuration, a center body is mounted in the interior of the injector. It is shown by both experiments and LES that the PVC is suppressed by the presence of the center body, while the mean flow remains nearly unaffected. The method of LSA is applied in order to explain the effect of the geometry change. The work shows that LSA is capable of explaining the occurrence or disappearance of coherent structures evolving on the turbulent flows if the geometry is changed. This is an important step in using LSA in the context of shape optimization of industrial fuel injectors.


Author(s):  
Sunghun Lee ◽  
Myeongwon Lee ◽  
Jin Park ◽  
Hongjip Kim

Abstract The center body diffuser is one of supersonic diffuser that can simulate high-altitude environment. There is center-body structure inside the diffuser, and a complex fluid flow is occurred inside the diffuser because of the interaction of the CB structure with gas exhausted from the nozzle outlet. In this study, starting point and flow characteristics of diffuser were investigated according to changing the CB nose cone angle and the length of distance between nozzle and CB structure. The differences of the supersonic flow were compared through each parameter of CB distance and CB nose angle. First changed parameter was length between nozzle and CB. According to the length of distance between nozzle and CB, axial momentum was developed and oblique shock wave moved front of CB from end of CB nose cone. Also, when CB position was located on a certain length, starting point of CBD decreased. Next change parameter was angle of CB nose cone. According to the angle raised, angle of oblique shock wave was raised and radial momentum of supersonic diffuser developed. But, according to radial momentum of supersonic flow over certain angle, the starting pressure of CBD increased. Because axial momentum which isolated vacuum chamber from atmospheric pressure. Through these CFD analysis results, it was shown that angle and length of distance between nozzle and CB influent performance of CBD.


Author(s):  
Thomas Ludwig Kaiser ◽  
Kilian Oberleithner ◽  
Laurent Selle ◽  
Thierry Poinsot

Abstract Shape optimization with respect to the suppression or enhancement of dynamical flow structures is an important topic in combustion research and beyond. In this paper, we investigate the flow in an industrial fuel injection system by experimental means, as well as Large Eddy Simulation (LES) and Linear Stability Analysis (LSA) for two configurations of the swirler. In the first configuration, the reference geometry, a Precessing Vortex Core (PVC) occurs. In the second configuration, a center body is mounted in the interior of the injector. It is shown by both experiments and LES that the PVC is suppressed in the presence of the center body, while the mean flow remains nearly unaffected. The method of LSA is applied in order to explain the effect of the geometry change. The work shows that LSA is capable of explaining the occurrence or disappearance of coherent structures evolving on the turbulent flows if the geometry is changed. This is an important step in using LSA in the context of shape optimization of industrial fuel injectors.


2019 ◽  
Vol 19 (12) ◽  
pp. 4471-4479 ◽  
Author(s):  
Dayang Wang ◽  
Ningde Jin ◽  
Lusheng Zhai ◽  
Yingyu Ren

2019 ◽  
Vol 18 (2-3) ◽  
pp. 189-206
Author(s):  
KBMQ Zaman ◽  
I Milanovic ◽  
AF Fagan ◽  
CJ Miller

The source of audible tones occurring with a coaxial nozzle is explored experimentally as well as computationally. The hardware is comprised of an inner and an outer nozzle, without a center-body, that are held together by a set of four struts. With increasing jet Mach number ( Mj), first a tone occurred at about 2550 Hz around Mj = 0.06. At higher Mj, a tone at 5200 Hz dominated the noise spectra. The corresponding non-dimensional frequency, based on the effective thickness of the inner nozzle lip and jet exit velocity, turned out to be about 0.2, a value characteristic of Karman vortex shedding. Thus, vortex shedding from the inner nozzle lip could be linked to the tones. From a comparison of acoustic wavelengths and nozzle dimensions, as well as locations of the pressure nodes and anti-nodes from the computational results, it was inferred that the vortex shedding excited one-quarter-wave resonances within the divergent sections of the nozzle. Such resonances in the inner and the outer nozzles produced the higher and the lower frequency tones, respectively.


Author(s):  
J Anish ◽  
◽  
S Mahesh Kumar ◽  
A Shameer ◽  
V Antony Berlin Jose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document