star tracker
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 64)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Josh Grace ◽  
Luca Merlo Paula Soares ◽  
Trevor Loe ◽  
John Bellardo
Keyword(s):  
Low Cost ◽  

Author(s):  
Hyosang Yoon ◽  
Kiwook Baeck ◽  
Junsung Wi

AbstractA star tracker calibration method using star images is presented in this paper. Unlike previous works, the proposed method estimates all parameters and the attitudes at once in a single least-squares formulation for the optimal calibration, which can be easily converted to a recursive estimation form. In addition, this paper presents a method to estimate the overall star tracker performance for attitude determination from the calibration results. Since the proposed method uses star images only, it can be applied to both on-orbit and ground star tracker calibration. The simulations show improvements in calibration performance about four times compared to the previous calibration method. The calibration experiments with actual star images are conducted to test its application.


Author(s):  
Nassim Bessaad ◽  
Qilian Bao ◽  
Zhao Jiankang ◽  
Karam Eliker

Abstract This work focuses on the feasibility of a fully autonomous geo-localization system for near-earth applications based on the strap-down inertial navigation system (SINS) and the star tracker. First, each sensor is analyzed individually. Then, the performance of the integrated system in a dynamic situation is investigated. Moreover, a detailed angle error analysis is given to estimate the impact on geo-localization. The navigation solution is proven to be affected by the sensors' errors plus an algorithmic error from the dead reckoning computation. Lastly, simulations are concluded to assess the dynamic movement scenario's performance and navigational possibility using the nonlinear Kalman filter. The results show the continuing divergence of the integrated navigation system affected by the dead reckoning algorithm. However, the continuous initial alignment in static mode reinitializes the position error successfully.


2021 ◽  
Vol 2 ◽  
Author(s):  
Karin Blank ◽  
Liang-Kang Huang ◽  
Jay Herman ◽  
Alexander Marshak

Earth Polychromatic Imaging Camera occupies a unique point of view for an Earth imager by being located approximately 1.5 million km from the planet at Earth-Sun Lagrange point, L1. This creates a number of unique challenges in geolocation, some of which are distance and mission specific. To solve these problems, algorithmic adaptations need to be made for calculations used for standard geolocation solutions, as well as artificial intelligence-based corrections for star tracker attitude and optical issues. This paper discusses methods for resolving these issues and bringing the geolocation solution to within requirements.


2021 ◽  
Vol 64 (10) ◽  
pp. 839-851
Author(s):  
T.V. Danilova ◽  
M.A. Arkhipova ◽  
M.A. Maslova

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5786
Author(s):  
Chenguang Shi ◽  
Rui Zhang ◽  
Yong Yu ◽  
Xingzhe Sun ◽  
Xiaodong Lin

The star tracker is widely used for high-accuracy missions due to its high accuracy position high autonomy and low power consumption. On the other hand, the ability of interference suppression of the star tracker has always been a hot issue of concern. A SLIC-DBSCAN-based algorithm for extracting effective information from a single image with strong interference has been developed in this paper to remove interferences. Firstly, the restricted LC (luminance-based contrast) transformation is utilized to enhance the contrast between background noise and the large-area interference. Then, SLIC (the simple linear iterative clustering) algorithm is adopted to segment the saliency map and in this process, optimized parameters are harnessed. Finally, from these segments, features are extracted and superpixels with similar features are combined by using DBSCAN (density-based spatial clustering of applications with noise). The proposed algorithm is proved effective by successfully removing large-area interference and extracting star spots from the sky region of the real star image.


2021 ◽  
Vol 4 ◽  
pp. 117-124
Author(s):  
Alexander Tkachenko ◽  

An in-flight geometric calibration (further — calibration) is interpreted here as a procedure of making more preceise mutual attitude parameters of the onboard imaging camera and the star tracker. The problem of calibration is solved with using of observations of the landmarks from the orbit. In this work, the landmarks are considered as unknown in the sense that they may be identified on the several snapshots, they may be associated with synchronous data of the star tracker and GPS, but their location in the Earth coordinate frame is unknown. While unknown markers are used, it is more complicated to provide high accuracy of calibration than when geo-referenced markers are observed. In such a situation, improvement of the onboard devices and gauges and increasing of their accuracy strenghtens advisability of agreement of attainable accuracy of calculations while in-flight geometric calibration with accessible measurings accuracy. It concerns properly calibration so as geo-referencing of space snaps using results of calibration. In particular, it is important to consider how accuracy of calibration depends on the accuracy of specific measurings and initial data. Actuality of the considered problem is indisputable. Without its solution, attraction of high-accurate measurings is senseless. A main means of investigation is computer simulanion and analysis of its results. The combined algorithm is proposed for the processing of the calibration measuring equations. It consists of two independent parts. The first one belongs to author of this work and is based on photogrammetric condition of collinearity The second part belongs to D.V. Lebedev and is based on photogrammetric condition of coplanarity. The method of state estimation with high convergence characteristics — fuzzy state observer — is used for resolving of measuring equations. The results of above-mentioned calibration are fully fit for the geo-referencing of the unknown ground objects with acceptable accuracy. Computer simulation had demonsrated good accuracy of the proposed method of the in-flight geometric calibration using unknown landmarks in a combination with high-precise characteristics of used technical means. The simulation had shown the calibration accuracy on the level of 5 arc sec and accuracy of the geo-referencing on the level of 10–20 m. It is fully comparable with accuracy when geo-referenced markers are observated.


2021 ◽  
Vol 13 (13) ◽  
pp. 2503
Author(s):  
Xinyuan Liu ◽  
Fei Xing ◽  
Shaoyan Fan ◽  
Zheng You

CubeSats have been widely used in remote sensing applications such as global coverage, hotspots revisited, etc. However, due to the strict size limitation, the high-accuracy measuring instruments such as star tracker are too large to be applied in CubeSat, thus causing insufficient accuracy in satellite attitude and image positioning. In order to reduce the volume of star tracker without compromising the performance, the relationship between the volume and pointing accuracy or dynamic performance is studied and an optimization model of star tracker with a minimum volume is proposed. Compared with the traditional star tracker, a deployable star tracker with a novel deployable baffle and surrounded circuit structure is designed. The baffle consists of nested three-stage sub-baffles with a scientifically analyzed and verified taper to achieve smooth deployment and compression. The special circuit structure surrounds the lens and can be compressed in the inner sub-baffle. Therefore, the deployable star tracker can be compressed to the smallest volume and the sub-baffles can be deployed to the accurate position without self-lock risk. The experimental results verify its deployment accuracy and reliability as well as space environmental adaptability. The deployable star tracker has almost the same results on stray light suppression ability, pointing accuracy (better than 3″ (3σ)) and dynamic performance (up to 3°/s) with the traditional star tracker. Furthermore, an integrated attitude determination and control system based on the deployable star tracker for CubeSat is further designed and implemented to support high-accuracy remote sensing.


Sign in / Sign up

Export Citation Format

Share Document