alkaline cleaning
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 17)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Ingrid Milosev ◽  
Peter Rodic

Abstract The study aimed to investigate the effect of surface pretreatment on the corrosion protection of aluminum alloy 7075-T6 in sodium chloride solution using cerium acetate as a corrosion inhibitor. Different surface pretreatments were tested: (i) mechanical grinding, (ii) mechanical grinding and non-water diamond polishing, (iii) mechanical grinding, alkaline etching with NaOH and acid desmutting, and (iv) mechanical grinding, alkaline cleaning with a commercial SurTec cleaner and acid desmutting. Topography, composition, and morphology of inhibited surface during immersion were investigated using optical microscopy, 3-D profilometry, scanning electron microscopy/energy-dispersive X-ray analysis and Fourier transform infrared spectrometry. The corrosion properties were determined by potentiodynamic measurements and electrochemical impedance spectroscopy in sodium chloride solution without and with the addition of cerium acetate. A change in the composition and morphology of the inhibited surface was noticed as a function of surface pretreatment and immersion time. Appropriate surface treatment resulted in improved protection against localized corrosion even after long-term immersion up to 1 month. Among mechanical pretreatments, polishing gave better results than grinding. Among chemical pretreatments, alkaline cleaning in SurTec/HNO3 was more appropriate as a preceding step to acid desmutting than alkaline etching with NaOH.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7413
Author(s):  
Mohammad Reza Shishesaz ◽  
Moslem Ghobadi ◽  
Najmeh Asadi ◽  
Alireza Zarezadeh ◽  
Ehsan Saebnoori ◽  
...  

The effects of surface pretreatments on the cerium-based conversion coating applied on an AA5083 aluminum alloy were investigated using a combination of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), polarization testing, and electrochemical impedance spectroscopy. Two steps of pretreatments containing acidic or alkaline solutions were applied to the surface to study the effects of surface pretreatments. Among the pretreated samples, the sample prepared by the pretreatment of the alkaline solution then acid washing presented higher corrosion protection (~3 orders of magnitude higher than the sample without pretreatment). This pretreatment provided a more active surface for the deposition of the cerium layer and provided a more suitable substrate for film formation, and made a more uniform film. The surface morphology of samples confirmed that the best surface coverage was presented by alkaline solution then acid washing pretreatment. The presence of cerium in the (EDS) analysis demonstrated that pretreatment with the alkaline solution then acid washing resulted in a higher deposition of the cerium layer on the aluminum surface. After selecting the best surface pretreatment, various deposition times of cerium baths were investigated. The best deposition time was achieved at 10 min, and after this critical time, a cracked film formed on the surface that could not be protective. The corrosion resistance of cerium-based conversion coatings obtained by electrochemical tests were used for training three computational techniques (artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine regression (SVMR)) based on Pretreatment-1 (acidic or alkaline cleaning: pH (1)), Pretreatment-2 (acidic or alkaline cleaning: pH (2)), and deposition time in the cerium bath as an input. Various statistical criteria showed that the ANFIS model (R2 = 0.99, MSE = 48.83, and MAE = 3.49) could forecast the corrosion behavior of a cerium-based conversion coating more accurately than other models. Finally, due to the robust performance of ANFIS in modeling, the effect of each parameter was studied.


2021 ◽  
Vol 117 ◽  
pp. 105014
Author(s):  
L. Schnöing ◽  
R.N. Shahnazari ◽  
I. Hohlen ◽  
A.J.V. Asselt ◽  
W. Augustin ◽  
...  

2021 ◽  
Vol 83 (5) ◽  
pp. 1005-1016
Author(s):  
Yongji Zhang ◽  
Xiaotong Wang ◽  
Hexiu Ye ◽  
Lingling Zhou ◽  
Zhiling Zhao

Abstract Powered Activated Carbon – Membrane Bioreactors (PAC-MBRs) have been used with good results for slightly polluted water treatment. Our batch experiments showed that the transmembrane pressure of a PAC-MBR was 25% less than that of a MBR in one period of test, which indicated that PAC did help control the fouling in MBRs. Based on this observation, several mechanisms of membrane fouling of MBRs and PAC-MBRs were investigated to have some insight into how PAC brought a positive impact. The total resistances decreased by 60% and different resistances were redistributed after adding PAC. The dominant one changed from filtration resistance to cake resistance. These smaller cake resistances resulted from the PAC because, showing in the scanning electron microscopy pictures, it made the cake layer looser and rougher than that on a normal membrane. Meanwhile, the analysis of the membrane eluent showed that the addition of PAC changed the microbial species and its metabolites on the membrane and effectively reduced the adsorption of hydrophilic organic molecules on the membrane surface. Additionally, PAC prevented polypeptide compounds from being trapped inside the pores of membranes, so the cake on the PAC-MBR contaminated membrane surface was easier to scrape off. In the test of cleaning methods, alkaline cleaning removed the most organics from contaminated membranes to restore membrane performance.


2021 ◽  
Vol 284 ◽  
pp. 124783
Author(s):  
Jhonathan Rivera ◽  
João Coelho ◽  
Rui Silva ◽  
Tiago Miranda ◽  
Fernando Castro ◽  
...  

2020 ◽  
Vol 9 (12) ◽  
pp. e23491210866
Author(s):  
Lucas Donizete Silva ◽  
Maíra Gontijo Moreira ◽  
Natália Trindade Guerra ◽  
Emiliane Araújo Andrade Naves ◽  
Priscila Cristina Bizam Vianna ◽  
...  

The presence of biofilms on food processing surfaces is a constant concern and can cause economic damage and impacts on public health. The aim of this work was to evaluate the development of P. fluorescens on the stainless steel surface, to analyze the CIP (clean in place) hygiene considering different geometries, to investigate the flow fluid dynamics and to determine the consumption of the inputs in this process. A circulation line with the characteristics of a dairy was used. The surface sampling was done using the swab technique and the performance of the process was evaluated based on decimal reductions considering the initial population adhered. The fluid dynamics study was carried out with FLUENT software and the consumption was determined by means of flow and electric current sensors. The results showed that P. fluorescens adhered to the surface reaching an average of 4.31 ± 0.26 log CFU∙cm-2, with the production of exopolysaccharides during usual time of industry operation. The decimal reduction was not significantly different among the pipe geometries in straight section, elbow, expansion and reduction. The stretch with branching in tee was statistically different from the others due to a zone of stagnation and fluid recirculation. The rinses were the stages that consumed the most water and the alkaline cleaning demanded more energy to execute the CIP. The geometries showed microbiological safety after CIP process, except tee. In addition, the expressive demand for water and energy for the execution of the process was evident.


Sign in / Sign up

Export Citation Format

Share Document