scholarly journals An Enhanced Decoding Algorithm for Coded Compressed Sensing with Applications to Unsourced Random Access

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 676
Author(s):  
Vamsi K. Amalladinne ◽  
Jamison R. Ebert ◽  
Jean-Francois Chamberland ◽  
Krishna R. Narayanan

Unsourced random access (URA) has emerged as a pragmatic framework for next-generation distributed sensor networks. Within URA, concatenated coding structures are often employed to ensure that the central base station can accurately recover the set of sent codewords during a given transmission period. Many URA algorithms employ independent inner and outer decoders, which can help reduce computational complexity at the expense of a decay in performance. In this article, an enhanced decoding algorithm is presented for a concatenated coding structure consisting of a wide range of inner codes and an outer tree-based code. It is shown that this algorithmic enhancement has the potential to simultaneously improve error performance and decrease the computational complexity of the decoder. This enhanced decoding algorithm is applied to two existing URA algorithms, and the performance benefits of the algorithm are characterized. Findings are supported by numerical simulations.

2005 ◽  
Vol 1 (3-4) ◽  
pp. 345-354 ◽  
Author(s):  
Dibyendu Chakrabarti ◽  
Subhamoy Maitra ◽  
Bimal Roy

Key pre-distribution is an important area of research in Distributed Sensor Networks (DSN). Two sensor nodes are considered connected for secure communication if they share one or more common secret key(s). It is important to analyse the largest subset of nodes in a DSN where each node is connected to every other node in that subset (i.e., the largest clique). This parameter (largest clique size) is important in terms of resiliency and capability towards efficient distributed computing in a DSN. In this paper, we concentrate on the schemes where the key pre-distribution strategies are based on transversal design and study the largest clique sizes. We show that merging of blocks to construct a node provides larger clique sizes than considering a block itself as a node in a transversal design.


2009 ◽  
Vol 15 (S3) ◽  
pp. 53-54
Author(s):  
Aiying Wu ◽  
P. M. Vilarinho

AbstractLead zirconate - lead titanate (PZT) materials are commercially important piezoelectric and ferroelectrics in a wide range of applications, such as data storage (dynamic access and ferroelectric random access memories) and sensing and actuating devices. PZT with the morphotropic phase boundary composition offers the highest piezoelectric response and at the present there are no fullydeveloped alternative materials to PZT. The importance of PZT associated with the continuous requirements of device miniaturization, imposes the development of high quality PZT thin films with optimized properties. Concomitantly due to the dependence of the final properties of thin films on the details of the microstructure a thoroughly analysis at the local scale of their microstructure is necessary. Sol-gel method, is one of the Chemical Solution Deposition techniques used to prepare oxide thin films, such as PZT. Starting from a solution, a solid network is progressively formed via inorganic polymerisation reactions. Most metal alkoxides used for sol-gel synthesis are highly reactive towards hydrolysis and condensation. Therefore their chemical reactivity has to be tailored via the chemical modification (or complexation) of metal alkoxides to avoid uncontrolled reactions and precipitation. For PZT sol gel thin film preparation, two chemical routes are frequently used depending on the nature of the molecular precursor, namely methotoxyethanol (MOE) route and diol-route.


Sign in / Sign up

Export Citation Format

Share Document