core pitch
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Jirasak Ponchua ◽  
Suchada Sitjongsataporn

The increasing demands within and between the data centers used for data traffic has required. Efficient links are important to data center applications for supporting the unlimited demand. Transmission capacity of single-mode fiber (SMF) is limited by fiber nonlinearity which prevents the increasing transmission power and finite amplifier bandwidth. Single-mode multi-core fibers (SM-MCFs) that are expected to overcome the current limitation of optical communication capacity. However, the inter-core crosstalk still has an effect on SM-MCF, which can limit the transmission of the inter-data center. In this paper, the design of four-core uncoupled multicore fiber is discussed for next generation inter-data center networks in order to support the unlimited use of data traffic in the future. The objective of this paper is to determine the appropriate range of core radius and core pitch, which are taken into consideration to reduce the inter-core crosstalk inside the optical fiber. These parameters can be able to improve various constraints to achieve the best multi-core fibers design. From the simulation concerned with the inter-core crosstalk, the experiment results show that the range of core pitch is at 47.5 μm to 50 μm and the range of core radius starts from 4.5 μm to 5.5 μm, that can achieve with crosstalk lower than – 30 dB/100 km for the future inter-data center networks.


2021 ◽  
Author(s):  
Afzal Hossain ◽  
Satya Prasad Majumder

Abstract Wavelength dependence of coupling coefficients and inter-core crosstalk in a 9-core homogeneous multi-core optical fiber (MCF) are investigated analytically. The analysis is further extended to evaluate the mean crosstalk power at the output of any core with light launched into other core of the MCF. Propagation length dependence of mean crosstalk power is investigated using both coupled mode theory (CMT) and coupled power theory (CPT). CPT based results show that mean crosstalk power linearly dependent on propagation distance, and it is higher for higher values of coupling coefficient. On the other hand, the mean crosstalk power is found to oscillate with the propagation distance in case of CMT. It is also observed that the mean crosstalk power (dB) is more prominent at a lower wavelength for a given propagation distance. The behavour of relative crosstalk power is also investigated analytically where it is noticed that the relative crosstalk power increases almost linearly with core pitch and with wavelength. It is also seen that the relative crosstalk power (dB) is more in an MCF with lower number of cores when it is varied with respect to wavelength. This is due to the increase of core pitch under the same cladding diameter and cladding thickness limitations.


2021 ◽  
Author(s):  
Salma Fatmia ◽  
Manimegalai CT ◽  
Sabitha Gauni ◽  
K. Kalimuthu

Abstract Analysis of crosstalk in multicore fiber using trench assisted technique. To reduce the crosstalk between the cores in the fiber the coupled mode theory and coupled power theory are adopted for crosstalk estimation and considering different design parameters such as core pitch, bending radius and wavelength to optimize the crosstalk performance. The homogeneous fiber which works under single mode operation has been considered. The study of performance by varying the trench width is also analysed. Crosstalk variation in outer cores and center core of the fiber is studied. And the study of variation of crosstalk with 5 different core radius has been done. The numerical simulation results of crosstalk behavior over bending radius, wavelength and trench width is obtained.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Umar Farooque ◽  
Rakesh Ranjan

AbstractIn order to select the heterogeneous multicore fiber (MCF) configuration with ultra-low crosstalk and low peak bending radius, comparative crosstalk analysis have been done for the three possible core configurations, namely, Configuration 1 - different refractive index (R.I.) and different radius, Configuration 2 - different R.I., and Configuration 3 - different radius. Using the coupled mode equation and the simplified expressions of mode coupling coefficient (MCC) for different configurations of heterogeneous cores, the crosstalk performance of all the heterogeneous MCF configurations along with the homogeneous MCF have been investigated analytically with respect to core pitch (D) and fiber bending radius (${R}_{b}$). Further, these expressions of MCC have been extended to obtain the simplified expressions of MCC for the estimation of crosstalk levels in respective trench-assisted (TA) heterogeneous MCF configurations. It is observed from the analysis that in Configuration 1, crosstalk level is lowest and the rate of decrease in the crosstalk with respect to the core pitch is highest compared to the other configurations of heterogeneous MCF. The values of crosstalk obtained analytically have been validated by comparing it with the values obtained from finite element method (FEM) based numerical simulation results. Further, we have investigated the impact of a fixed percent change (5%) in the core parameters (radius and/or R.I.) of one of the core of a homogeneous MCF, to realize the different heterogeneous MCF configurations, on the variations in crosstalk levels, difference in the mode effective refractive index of the core 1 and core 2 ($\Delta {n}_{eff}={n}_{eff1}-{n}_{eff2}$), and the peak bending radius (${R}_{pk}$). For the same percent variations (5%) in the core parameters (radius and/or R.I.) of different configurations of cores (Config. 1-Config. 3), Config. 1 MCF has highest variation in $\Delta {n}_{eff}$ value compared to other configurations of MCF. Further, this highest variation in $\Delta {n}_{eff}$ value of Config. 1 MCF results in smallest peak bending radius. The smaller value of peak bending radius allows MCF to bend into smaller radius. Therefore, Configuration 1 is the potential choice for the design of MCF with smaller peak bending radius and ultra-low crosstalk level compared to the other configurations of SI-heterogeneous MCF.


2011 ◽  
Vol 295-297 ◽  
pp. 1330-1334 ◽  
Author(s):  
Yu Zheng ◽  
Jian Duan

Micro V-groove is an important optical component in the packaging of optoelectronic devices, which holds the position of the optical fibers. The micro V-groove can be fabricated by three main techniques on different materials: wet etching, ultra precision machining and molding press. The main parameters, which determine the micro V-groove quality, include core pitch, surface roughness and cured adhesive height. In this paper, three fabrication techniques are discussed to address the future needs of the next-generation optical fiber communication technology. The advantages and disadvantages of each fabrication technique are discussed with the quality issues. The findings can be served as guides for the materials and fabrication in micro V-groove in optoelectronic packaging.


2003 ◽  
Author(s):  
Wen-Ming Cheng ◽  
Hen-Wai Tsao ◽  
Shyh-Lin Tsao

Sign in / Sign up

Export Citation Format

Share Document