hybrid fish
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 3)

Aquaculture ◽  
2022 ◽  
Vol 548 ◽  
pp. 737547
Author(s):  
Yude Wang ◽  
Jiajun Yao ◽  
Anmin Liao ◽  
Huifang Tan ◽  
Yaxin Luo ◽  
...  

2021 ◽  
Author(s):  
Evan Lloyd ◽  
Brittnee McDole ◽  
Martin Privat ◽  
James B. Jaggard ◽  
Erik Duboué ◽  
...  

AbstractSensory systems display remarkable plasticity and are under strong evolutionary selection. The Mexican cavefish, Astyanax mexicanus, consists of eyed river-dwelling surface populations, and multiple independent cave populations which have converged on eye loss, providing the opportunity to examine the evolution of sensory circuits in response to environmental perturbation. Functional analysis across multiple transgenic populations expressing GCaMP6s showed that functional connectivity of the optic tectum largely did not differ between populations, except for the selective loss of negatively correlated activity within the cavefish tectum, suggesting positively correlated neural activity is resistant to an evolved loss of input from the retina. Further, analysis of surface-cave hybrid fish reveals that changes in the tectum are genetically distinct from those encoding eye-loss. Together, these findings uncover the independent evolution of multiple components of the visual system and establish the use of functional imaging in A. mexicanus to study neural circuit evolution.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wuhui Li ◽  
Shi Wang ◽  
Jie Hu ◽  
Chenchen Tang ◽  
Chang Wu ◽  
...  

Abstract Background Hybridization, which can quickly merge two or more divergent genomes and form new allopolyploids, is an important technique in fish genetic breeding. However, the merged subgenomes must adjust and coexist with one another in a single nucleus, which may cause subgenome interaction and dominance at the gene expression level and has been observed in some allopolyploid plants. In our previous studies, newly formed allodiploid hybrid fish derived from herbivorous Megalobrama amblycephala (♀) × carnivorous Culter alburnus (♂) had herbivorous characteristic. It is thus interesting to further characterize whether the subgenome interaction and dominance derive dietary adaptation of this hybrid fish. Results Differential expression, homoeolog expression silencing and bias were investigated in the hybrid fish after 70 days of adaptation to carnivorous and herbivorous diets. A total of 2.65 × 108 clean reads (74.06 Gb) from the liver and intestinal transcriptomes were mapped to the two parent genomes based on specific SNPs. A total of 2538 and 4385 differentially expressed homoeologous genes (DEHs) were identified in the liver and intestinal tissues between the two groups of fish, respectively, and these DEHs were highly enriched in fat digestion and carbon metabolism, amino acid metabolism and steroid biosynthesis. Furthermore, subgenome dominance were observed in tissues, with paternal subgenome was more dominant than maternal subgenome. Moreover, subgenome expression dominance controlled functional pathways in metabolism, disease, cellular processes, environment and genetic information processing during the two dietary adaptation processes. In addition, few but sturdy villi in the intestine, significant fat accumulation and a higher concentration of malondialdehyde in the liver were observed in fish fed carnivorous diet compared with fish fed herbivorous diet. Conclusions Our results indicated that diet drives phenotypic and genetic variation, and the asymmetric expression of homoeologous genes (including differential expression, expression silencing and bias) may play key roles in dietary adaptation of hybrid fish. Subgenome expression dominance may contribute to uncovering the mechanistic basis of heterosis and also provide perspectives for fish genetic breeding and application.


2020 ◽  
Author(s):  
Morgan O’Gorman ◽  
Sunishka Thakur ◽  
Gillian Imrie ◽  
Rachel L. Moran ◽  
Erik Duboue ◽  
...  

SummaryAdaptation to novel environments often involves the evolution of multiple morphological, physiological and behavioral traits. One striking example of multi-trait evolution is the suite of traits that has evolved repeatedly in cave animals, including regression of eyes, loss of pigmentation, and enhancement of non-visual sensory systems [1,3]. The Mexican tetra, Astyanax mexicanus, consists of fish that inhabit at least 30 caves in Northeast Mexico and ancestral-like surface fish which inhabit the rivers of Mexico and Southern Texas [6]. Cave A. mexicanus are interfertile with surface fish and have evolved a number of traits that are common to cave animals throughout the world, including albinism, eye loss, and alterations to behavior [8–10]. To define relationships between different cave-evolved traits, we phenotyped 208 surface-cave F2 hybrid fish for numerous morphological and behavioral traits. We found significant differences in sleep between pigmented and albino hybrid fish, raising the possibility that these traits share a genetic basis. In cavefish and many other species, mutations in oculocutaneous albinism 2 (oca2) cause albinism [11–15]. Surface fish with CRISPR-induced mutations in oca2 displayed both albinism and reduced sleep. Further, this mutation in oca2 fails to complement sleep loss when surface fish harboring this engineered mutation are crossed to different, independently evolved populations of albino cavefish with naturally occurring mutations in oca2, confirming that oca2 contributes to sleep loss. Finally, analysis of the oca2 locus in wild caught cave and surface fish suggests that oca2 is under positive selection in at least three cave populations. Taken together, these findings identify oca2 as a novel regulator of sleep and suggest that a pleiotropic function of oca2 underlies the adaptive evolution of both of albinism and sleep loss.


Diversity ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 368
Author(s):  
Luis Espinasa ◽  
Claudia Patricia Ornelas-García ◽  
Laurent Legendre ◽  
Sylvie Rétaux ◽  
Alexandra Best ◽  
...  

The Astyanax species complex has two morphs: a blind, depigmented morph which inhabits caves in México and an eyed, pigmented surface-dwelling morph. The eyed morph can also be found in a few caves, sometimes hybridizing with the cave morph. This species complex has arguably become the most prominent model system among cave organisms for the study of evolutionary development and genomics. Before this study, 32 caves were known to be inhabited by the cave morph, 30 of them within the El Abra region. The purpose of this study was to conduct new surveys of the area and to assess some unconfirmed reports of caves presumably inhabited by troglomorphic fish. We describe two new localities, Sótano del Toro #2 and Sótano de La Calera. These two caves comprise a single hydrologic system together with the previously described cave of Sótano del Toro. The system is inhabited by a mixed population of troglomorphic, epigeomorphic, and presumably hybrid fish. Furthermore, Astyanax cavefish and the mysid shrimp Spelaeomysis quinterensis show a phylogeographic convergence that supports the notion that the central Sierra de El Abra is a biogeographical region that has influenced the evolutionary history of its aquatic community across species. The presumptive location of the boundaries of this biogeographical region are identified.


Author(s):  
Luis Espinasa ◽  
Claudia Patricia Ornelas-García ◽  
Laurent Legendre ◽  
Sylvie Rétaux ◽  
Alexandra Best ◽  
...  

The Astyanax species complex has two morphs: a blind, depigmented morph which inhabits caves in México and an eyed, pigmented surface-dwelling morph. The eyed morph can also be found in caves, sometimes hybridizing with the cave morph. This species complex has arguably become the most prominent model system among cave organisms for the study of evolutionary development and genomics. Before this study, 32 caves were known to be inhabited by the cave morph, 30 of them within the El Abra region. The purpose of this study was to conduct new surveys of the area and to assess some unconfirmed reports of caves presumably inhabited by troglomorphic fish. We describe two new localities, Sótano del Toro #2 and Sótano de La Calera. These two caves make a single hydric system together with the previously described cave of Sótano del Toro. The system is inhabited by a mixed population of troglomorphic, epigeomorphic and presumably hybrid fish. Furthermore, Astyanax cavefish and the mysid shrimp Spelaeomysis quinterensis show a phylogeographic convergence that supports the notion that the central Sierra de El Abra is a biogeographical region that has influenced the evolutionary history of its aquatic community across species. The presumptive location of its boundaries, which may limit cave-to-cave or surface-to-cave gene flow, are identified.


Sign in / Sign up

Export Citation Format

Share Document