left ventricular noncompaction cardiomyopathy
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Enkhsaikhan Purevjav ◽  
Michelle Chintanaphol ◽  
Buyan-Ochir Orgil ◽  
Nelly R. Alberson ◽  
Jeffrey A. Towbin

Cardiomyopathy or disease of the heart muscle involves abnormal enlargement and a thickened, stiff, or spongy-like appearance of the myocardium. As a result, the function of the myocardium is weakened and does not sufficiently pump blood throughout the body nor maintain a normal pumping rhythm, leading to heart failure. The main types of cardiomyopathies include dilated hypertrophic, restrictive, arrhythmogenic, and noncompaction cardiomyopathy. Abnormal trabeculations of the myocardium in the left ventricle are classified as left ventricular noncompaction cardiomyopathy (LVNC). Myocardial noncompaction most frequently is observed at the apex of the left ventricle and can be associated with chamber dilation or muscle hypertrophy, systolic or diastolic dysfunction, or both, or various forms of congenital heart disease. Animal models are incredibly important for uncovering the etiology and pathogenesis involved in this disease. This chapter will describe the clinical and pathological features of LVNC in humans and present the animal models that have been used for the study of the genetic basis and pathogenesis of this disease.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alina Schultze-Berndt ◽  
Jirko Kühnisch ◽  
Christopher Herbst ◽  
Franziska Seidel ◽  
Nadya Al-Wakeel-Marquard ◽  
...  

Background: Left ventricular noncompaction cardiomyopathy (LVNC CMP) is a genetic cardiomyopathy. Genotype-phenotype correlation and clinical outcome of genetic variants in pediatric and adult LVNC CMP patients are still unclear.Methods: The retrospective multicenter study was conducted in unrelated index patients with LVNC CMP, diagnosed between the years 1987 and 2017, and all available family members. All index patients underwent next-generation sequencing for genetic variants in 174 target genes using the Illumina TruSight Cardio Sequencing Panel. Major adverse cardiac events (MACE) included mechanical circulatory support, heart transplantation, survivor of cardiac death, and/or all-cause death as combined endpoint.Results: Study population included 149 LVNC CMP patients with a median age of 27.8 (9.2–44.8) years at diagnosis; 58% of them were symptomatic, 18% suffered from non-sustained and sustained arrhythmias, and 17% had an implantable cardioverter defibrillator (ICD) implanted. 55/137 patients (40%) were ≤ 18 years at diagnosis.A total of 134 variants were identified in 87/113 (77%) index patients. 93 variants were classified as variant of unknown significance (VUS), 24 as likely pathogenic and 15 as pathogenic. The genetic yield of (likely) pathogenic variants was 35/113 (31%) index patients. Variants occurred most frequently in MYH7 (n=19), TTN (n = 10) and MYBPC3 (n = 8). Altogether, sarcomere gene variants constituted 42.5% (n = 57) of all variants. The presence or absence of (likely) pathogenic variants or variants in specific genes did not allow risk stratification for MACE.Reduced left ventricular (LV) systolic function and increased left ventricular end-diastolic diameter (LVEDD) were risk factors for event-free survival in the Kaplan-Meier analysis. Through multivariate analysis we identified reduced LV systolic function as the main risk factor for MACE. Patients with reduced LV systolic function were at a 4.6-fold higher risk for MACE.Conclusions: Genetic variants did not predict the risk of developing a MACE, neither in the pediatric nor in the adult cohort. Multivariate analysis emphasized reduced LV systolic function as the main independent factor that is elevating the risk for MACE. Genetic screening is useful for cascade screening to identify family members at risk for developing LVNC CMP.


2021 ◽  
pp. 1-6
Author(s):  
Dina A. Mehaney ◽  
Alireza Haghighi ◽  
Amira K. Embaby ◽  
Reham A. Zeyada ◽  
Rania K. Darwish ◽  
...  

Abstract Background: Paediatric cardiomyopathy is a progressive, often lethal disorder and the most common cause of heart failure in children. Despite its severe outcomes, the genetic aetiology is still poorly characterised. High-throughput sequencing offers a great opportunity for a better understanding of the genetic causes of cardiomyopathy. Aim: The current study aimed to elucidate the genetic background of cardiomyopathy in Egyptian children. Methods: This hospital-based study involved 68 patients; 58 idiopathic primary dilated cardiomyopathy and 10 left ventricular noncompaction cardiomyopathy. Cardiomyopathy-associated genes were investigated using targeted next-generation sequencing. Results: Consanguinity was positive in 53 and 70% of dilated cardiomyopathy and left ventricular noncompaction cardiomyopathy patients, respectively. Positive family history of cardiomyopathy was present in 28% of dilated cardiomyopathy and 10% of the left ventricular noncompaction cardiomyopathy patients. In 25 patients, 29 rare variants were detected; 2 likely pathogenic variants in TNNI3 and TTN and 27 variants of uncertain significance explaining 2.9% of patients. Conclusions: The low genetic detection rate suggests that novel genes or variants might underlie paediatric cardiomyopathy in Egypt, especially with the high burden of consanguinity. Being the first national and regional report, our study could be a reference for future genetic testing in Egyptian cardiomyopathy children. Genome-wide tests (whole exome/genome sequencing) might be more suitable than the targeted sequencing to investigate the primary cardiomyopathy patients. Molecular characterisation of cardiomyopathies in different ethnicities will allow for global comparative studies that could result in understanding the pathophysiology and heterogeneity of cardiomyopathies.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Yuriy Vakhrushev ◽  
Alexandra Kozyreva ◽  
Andrey Semenov ◽  
Polina Sokolnikova ◽  
Tamara Lubimtseva ◽  
...  

RBM20 (RNA-binding motif protein 20) is a splicing factor targeting multiple cardiac genes, and its mutations cause cardiomyopathies. Originally, RBM20 mutations were discovered to cause the development of dilated cardiomyopathy by erroneous splicing of the gene TTN (titin). Titin is a giant protein found in a structure of the sarcomere that functions as a molecular spring and provides a passive stiffness to the cardiomyocyte. Later, RBM20 mutations were also described in association with arrhythmogenic right ventricular cardiomyopathy and left ventricular noncompaction cardiomyopathy. Here, we present a clinical case of a rare arrhythmogenic phenotype and no structural cardiac abnormalities associated with a RBM20 genetic variant of uncertain significance.


Sign in / Sign up

Export Citation Format

Share Document