wall wettability
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Filippos Sofos ◽  
Theodoros E. Karakasidis ◽  
Ioannis E. Sarris

AbstractMolecular dynamics simulations are employed to estimate the effect of nanopore size, wall wettability, and the external field strength on successful ion removal from water solutions. It is demonstrated that the presence of ions, along with the additive effect of an external electric field, constitute a multivariate environment that affect fluidic interactions and facilitate, or block, ion drift to the walls. The potential energy is calculated across every channel case investigated, indicating possible ion localization, while electric field lines are presented, to reveal ion routing throughout the channel. The electric field strength is the dominant ion separation factor, while wall wettability strength, which characterizes if the walls are hydrophobic or hydrophilic has not been found to affect ion movement significantly at the scale studied here. Moreover, the diffusion coefficient values along the three dimensions are reported. Diffusion coefficients have shown a decreasing tendency as the external electric field increases, and do not seem to be affected by the degree of wall wettability at the scale investigated here.


AIP Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 065011
Author(s):  
Hao Yuan ◽  
Jianbao Zhang ◽  
Jiayu Zhou ◽  
Jiawan Tan ◽  
Zhaobing Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Gozawa ◽  
Yoshihiro Takamura ◽  
Tomoe Aoki ◽  
Kentaro Iwasaki ◽  
Masaru Inatani

AbstractWe investigated the change in the retinal gas cover rates due to intraocular gas volume and positions using computational eye models and demonstrated the appropriate position after pars plana vitrectomy (PPV) with gas tamponade for rhegmatogenous retinal detachments (RRDs). Computational fluid dynamic (CFD) software was used to calculate the retinal wall wettability of a computational pseudophakic eye models using fluid analysis. The model utilized different gas volumes from 10 to 90%, in increments of 10% to the vitreous cavity in the supine, sitting, lateral, prone with closed eyes, and prone positions. Then, the gas cover rates of the retina were measured in each quadrant. When breaks are limited to the inferior retina anterior to the equator or multiple breaks are observed in two or more quadrants anterior to the equator, supine position maintained 100% gas cover rates in all breaks for the longest duration compared with other positions. When breaks are limited to either superior, nasal, or temporal retina, sitting, lower temporal, and lower nasal position were maintained at 100% gas cover rates for the longest duration, respectively. Our results may contribute to better surgical outcomes of RRDs and a reduction in the duration of the postoperative prone position.


2018 ◽  
Vol 20 (44) ◽  
pp. 28019-28025 ◽  
Author(s):  
Clinton G. Wiener ◽  
Zhe Qiang ◽  
Yanfeng Xia ◽  
Madhusudan Tyagi ◽  
Bryan D. Vogt

Confinement of water to nanoscale dimensions enables substantial supercooling that depends weakly on the pore wall wettability.


Sign in / Sign up

Export Citation Format

Share Document