scholarly journals Pseudomonas aeruginosa prioritizes detoxification of hydrogen peroxide over nitric oxide

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Darshan M. Sivaloganathan ◽  
Mark P. Brynildsen

Abstract Objective Bacteria are exposed to multiple concurrent antimicrobial stressors within phagosomes. Among the antimicrobials produced, hydrogen peroxide and nitric oxide are two of the most deleterious products. In a previous study, we discovered that when faced with both stressors simultaneously, Escherichia coli prioritized detoxification of hydrogen peroxide over nitric oxide. In this study, we investigated whether such a process was conserved in another bacterium, Pseudomonas aeruginosa. Results P. aeruginosa prioritized hydrogen peroxide detoxification in a dose-dependent manner. Specifically, hydrogen peroxide detoxification was unperturbed by the presence of nitric oxide, whereas larger doses of hydrogen peroxide produced longer delays in nitric oxide detoxification. Computational modelling revealed that the rate of nitric oxide consumption in co-treated cultures was biphasic, with cells entering the second phase of detoxification only after hydrogen peroxide was eliminated from the culture.

2021 ◽  
Author(s):  
Yasmine Mahgoub ◽  
Rida Arif ◽  
Susu Zughaier

Background: Pseudomonas aeruginosa is a well-known opportunistic pathogen. The gram-negative bacillus, commonly associated with hospital-acquired infections, utilizes the host’s impaired immune responses to establish infection. Of its many virulence factors, pyocyanin is essential for P. aeruginosa to establish its full infectivity. Macrophages act as sentinels of the innate immune system, as well as play other roles in homeostasis, tissue remodeling, and bridging between the innate and adaptive immune systems. Aim: This study aimed to investigate the effects of pyocyanin on macrophage innate immune defenses by assessing the function of macrophages treated with pyocyanin and TLR ligands. Phagocytosis of opsonized zymosan, LPS-induced nitric oxide release and cytokine release were used as measures of functional responses. Results: This study found that pyocyanin inhibited phagocytosis-induced ROS release in a dose-dependent manner and reduced nitric oxide release from macrophages induced with P. aeruginosa LPS. In addition, pyocyanin modulated cytokines and chemokines release from macrophages exposed to P. aeruginosa LPS in a dose-dependent manner. Pyocyanin significantly enhanced IL-1β release as well as several chemokines. Therefore, pyocyanin facilitates Pseudomonas aeruginosa to persevere in the immunocompromised host through modulating macrophage’s innate immune defenses. Conclusion: Pyocyanin inhibits macrophage functional defense responses to facilitate Pseudomonas aeruginosa infection.


2014 ◽  
Vol 25 (3-4) ◽  
pp. 24-33
Author(s):  
O. I. Dzjuba ◽  
M. V. Yatsenko

The article deals with the history of the study and the current state of research of physiological and biochemical properties of the plant genus Sedum that are useful for human and has been used in folk medicine for many years. It was noticed that antioxidant properties of extracts from plants S. sarmentosum, S. sempervivoides, S. takesimense were caused by the presence of phenolic compounds. Methanol extract of plants S. takesimense exhibited strong scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals as well as significant inhibitory effects on lipid peroxidation and low density lipoprotein (LDL) oxidation induced by a metal ion Cu2+. Various immunomodulatory activities of various fractions of plants extracts (S. dendroideum, S. kamtschaticum, S. sarmentosum, S. telephium) are observed. It was shown that the ethanol extract of S. sarmentosum and it’s fractions suppressed specific antibody and cellular responses to ovalbumin in mice. The methanol extract of plants S. sarmentosum reduced the levels of anti-inflammatory markers, such as volume of exudates, number of polymorphonuclear leukocytes, suppressed nitric oxide synthesis in activated macrophages via suppressed induction of inducible nitric oxide synthase (iNOS). Polysaccharides fractions from plants S. telephium inducing productions of tumor necrosis factor alpha (TNF-α), increasing the intensity of phagocytosis in vitro and in vivo. Methanol extract from the whole part of S. kamtschaticum strongly inhibit PGE2 production from lipopolysaccharide-induced RAW 264.7 cells, a mouse macrophage cell line via modulating activity in gene expression of the enzyme cyclooxygenase-2 (COX-2). The methanol extract of plants S. sarmentosum and the major kaempferol glycosides from S. dendroideum have antinociceptive activity. It was noticed that anti-adipogenic activity of extracts from plants S. kamtschaticum were caused by inhibition of peroxisome-proliferator-activated receptor γ (PPARγ) expression and it’s dependent target genes, such as genes encoding adipocyte protein 2 (аР2), lipoprotein lipase (LPL), adiponectin and CD36. Polysaccharides fractions from S. telephium cause inhibition of cell adhesion of human fibroblast (MRC5) to laminin and fibronectin via interfere with integrin-mediated cell behaviour and they contributed to the role of polysaccharides in cell-matrix interaction. The methanol extract of plants S. sarmentosum exhibited a significant inhibitory activity in the chick embryo chorioallantoic membrane angiogenesis in a dose-dependent manner. The crude alkaloid fraction of S. sarmentosum caused a dose-dependent inhibition of cell proliferation on murine hepatoma cell line BNL CL.2 and human hepatoma cell line HepG2 without necrosis or apoptosis. Alkaloids from plants S. sarmentosum may improve survival of hepatoma patients via the inhibition of excessive growth of tumor cells. Plant’s juices have antiviral activity (S. sarmentosum, S. spurium, S. stahlii). Crude ethanol extract S. praealtum have spermicidal activity of the in mice and a relevant inhibitory effect of aqueous extract on human spermatozoa motility as well as an anti-fertilizing activity in rats. Hepatoprotective triterpenes, e.g., δ-amyrone, 3-epi-δ-amyrin, δ-amyrin and sarmentolin were isolated from S. sarmentosum. 2- and 2,6-substituted piperidine alkaloids (e.g., norsedamine, allosedridine, sedamine, allosedamine) are observed in plants S. acre, which in the presence of data on the use of pyridine and piperidine derivatives for treating neurodegenerative diseases (e.g., Alzheimer's disease), points on the promising research in this area. Taking into account that biologically active compounds are accumulated in the aboveground vegetative organs of plants of Sedum, the prospects of further study of the use of Sedum for the purposes of biotechnology and in the pharmaceutical industry becomes apparent. This work extends the existing views regarding the use of plants Sedum.


This trial research was performed to discuss the immune-influence of Melaleuca leucadendra ‘paper-bark tree’ dried leaves which is an important medical plant known in many regions in the world. The leaves were dissolved in a mixture of (ethanol + water) (3:1) mixture, then filtered, evaporated and dried under reduced pressure to obtain leaves extract. The macrophages of blood derived origin were provided from rats and mixed with three different leaves extracts doses in tissue culture plates and incubated then stained with fluorescent acridine orange and examined under fluorescent microscope to assess the phagocytic and killing potency. The wells contents were aspirated and assayed for nitric oxide and interleukin-2 levels. The results displayed an obvious increase in phagocytic, killing performance as well as nitric oxide and IL-2 level production than control in a dose dependent manner. The obtained results suggested the immune-stimulant impact of the paper-bark tree leaves.


2020 ◽  
Vol 85 (4) ◽  
pp. 882-889
Author(s):  
Yan Liang ◽  
Shijiao Zha ◽  
Masanobu Tentaku ◽  
Takasi Okimura ◽  
Zedong Jiang ◽  
...  

ABSTRACT In this study, we found that a sulfated polysaccharide isolated from the brown alga Ascophyllum nodosum, ascophyllan, showed suppressive effects on stimulated RAW264.7 cells. Ascophyllan significantly inhibited expression of inducible nitric oxide synthase mRNA and excessive production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner without affecting the viability of RAW264.7 cells. Ascophyllan also reduced the elevated level of intracellular reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells. Furthermore, preincubation with ascophyllan resulted in concentration-dependent decrease in ROS production in phorbol 12-myristate-13-acetate-stimulated RAW264.7 cells. Our results suggest that ascophyllan can exhibit anti-inflammatory effects on stimulated macrophages mainly through the attenuation of NO and ROS productions.


1999 ◽  
Vol 344 (3) ◽  
pp. 837-844 ◽  
Author(s):  
Atsushi MITSUMOTO ◽  
Kwi-Ryeon KIM ◽  
Genichiro OSHIMA ◽  
Manabu KUNIMOTO ◽  
Katsuya OKAWA ◽  
...  

To clarify the molecular mechanisms of nitric oxide (NO) signalling, we examined the NO-responsive proteins in cultured human endothelial cells by two-dimensional (2D) PAGE. Levels of two proteins [NO-responsive proteins (NORPs)] with different pI values responded to NO donors. One NORP (pI 5.2) appeared in response to NO, whereas another (pI 5.0) disappeared. These proteins were identified as a native form and a modified form of human glyoxalase I (Glox I; EC 4.4.1.5) by peptide mapping, microsequencing and correlation between the activity and the isoelectric shift. Glox I lost activity in response to NO, and all NO donors tested inhibited its activity in a dose-dependent manner. Activity and normal electrophoretic mobility were restored by dithiothreitol and by the removal of sources of NO from the culture medium. Glox I was selectively inactivated by NO; compounds that induce oxidative stress (H2O2, paraquat and arsenite) failed to inhibit this enzyme. Our results suggest that NO oxidatively modifies Glox I and reversibly inhibits the enzyme's activity. The inactivation of Glox I by NO was more effective than that of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), another NO-sensitive enzyme. Thus Glox I seems to be a novel NO-responsive protein that is more sensitive to NO than G3PDH.


Author(s):  
O B Oloyede

This study investigated phytochemical content, radical scavenging and antibacterial activities of aqueous extract of leaves of Jatropha curcas Linn. Quantitative phytochemical analyses of alkaloids, phenols, tannins and flavonoids contents were carried out; radical scavenging activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and hydrogen peroxide inhibition assays while Disc diffusion and Agar well (ditch) diffusion methods were used for antibacterial activity against Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa, Staphilococcus aureus and Proteus species at 62.5, 125, 250 and 500 mg/mL. The extract contained alkaloids (1.600± 0.58 %), tannins (0.121 ± 0.00 mg/mL), phenols (0.463 ± 0.06 mg/mL) and flavonoids (0.672 ± 0.00 mg/mL), and showed radical scavenging activities against DPPH (IC50 = 21.24) and hydrogen peroxide (15.67 mg/mL) which were less than that of Butylated hydroxyanisole (BHA); IC50 = 3.92 (DPPH) and 6.19 mg/mL (hydrogen peroxide) respectively. It also showed antibacterial activity against Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa at 250 and 500 mg/ml (MIC = 125 mg/mL), which were resistant to ampicillin, chloxacillin and erythromycin, and the extract was inactive against Staphilococcus aureus and Proteus species at these concentrations, though all were sensitive to gentamycin. This shows that the aqueous extract of leaves of Jatropha curcas Linn may possess some of the folkloric properties claimed.


1989 ◽  
Vol 256 (5) ◽  
pp. E619-E623
Author(s):  
T. Yoshimura ◽  
J. Ishizuka ◽  
G. H. Greeley ◽  
J. C. Thompson

We have examined the effect of galanin infusion on glucose-stimulated release of insulin from the isolated perfused pancreas of the rat to better characterize the effect of galanin on the first and second phases of insulin release. The effects of galanin on insulin release stimulated by L-arginine or high concentrations of potassium were also examined. When perfusion of galanin was started 4 min before the start of perfusion of high glucose (16.7 mM), galanin (10(-8)-10(-11) M) inhibited both the first and second phases of insulin release in a dose-dependent manner. When perfusion of galanin (10(-8) or 10(-9) M) was started simultaneously with high glucose (16.7 mM), only the second phase of insulin release was suppressed (P less than 0.05). Galanin (10(-9) M) failed to inhibit insulin release stimulated by L-arginine (10 and 5 mM) or potassium (25 and 20 mM). These findings suggest that the inhibitory action of galanin on glucose-stimulated insulin release is exerted on early intracellular events that occur during the stimulation of insulin release and that are common to both phases. Because galanin does not inhibit insulin release stimulated by L-arginine or potassium, galanin may inhibit glucose-stimulated closure of potassium channels.


1993 ◽  
Vol 265 (4) ◽  
pp. F487-F503 ◽  
Author(s):  
T. Inoue ◽  
M. Naruse ◽  
M. Nakayama ◽  
K. Kurokawa ◽  
T. Sato

The physiological role of oxytocin (OT) in the kidney is still unclear, although autoradiographic data have shown the existence of OT receptors in the rat kidney. We examined the effect of OT in the microperfused rabbit cortical collecting duct (CCD) by using conventional cable analysis and microscope photometry. On addition of 10(-9) M OT to the bath, the lumen-negative transepithelial voltage (VT) transiently increased and the transepithelial resistance (RT) and the fractional resistance of the apical membrane (FRA) (1st phase) both decreased. After this initial change, the lumen-negative VT gradually decreased below its baseline level and RT and FRA (second phase) both increased. These electrical changes were dose dependent and were prevented by the addition of 10(-5) M amiloride to the lumen. Although responses to OT were not prevented by 10(-9) M arginine vasopressin (AVP) or 10(-6) M of a V1-receptor antagonist (OPC-21268) or V2-receptor antagonist (OPC-31260), they were inhibited by the addition of the specific OT antagonist des-Gly-NH2-[d(CH2)3,Tyr(Me),Thr]OVT. Additional studies of intracellular free calcium ([Ca2+]i) revealed that 10(-8)-10(-6) M OT caused an increase in [Ca2+]i in CCD in a dose-dependent manner. Also, pretreatment with 2 x 10(-8) M bis-(aminophenoxy)ethane-tetraacetic acid-acetoxymethyl ester, an intracellular Ca2+ chelator, abolished the electrical and [Ca2+]i responses to OT. Pretreatment with 5 x 10(-4) M 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (CPT-cAMP) partially prevented the electrical responses to OT, thus reducing the decrease in lumen-negative VT below its basal level and the increase in RT after the 1st phase. These data show that OT affects the apical Na+ conductance of collecting duct cells through OT receptors distinct from the AVP receptors and that the effect of OT may, at least in part, be brought about by a mechanism(s) dependent on the increase in [Ca2+]i and cAMP production.


1996 ◽  
Vol 313 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Geneviève VALLETTE ◽  
Anne JARRY ◽  
Jean-Eric BRANKA ◽  
Christian L. LABOISSE

We evaluated the effects of two NO donors, sodium nitroprusside (SNP) and 3-morpholino-sydnonimine (SIN-1), characterized by alternative redox states, i.e. nitrosonium ion (NO+) and nitric oxide (NO•) respectively, on intracellular interleukin-1 (IL-1) production, by a human colonic epithelial cell line (HT29-Cl.16E). SNP was able to induce intracellular IL-1α production up to 10 h incubation, in a dose-dependent manner. Several experiments provide evidence that the NO+ redox form, and not the free radical NO•, is implicated in the IL-1α production: (i) SIN-1, devoid of any NO+ character, led to a very weak IL-1 production as compared with SNP; (ii) the reductive action of a thiol such as cysteine on NO+ led to a dose-dependent increase in NO• concentration, measured as NO2-/NO3- accumulation, and to a large decrease in IL-1 production. Dibutyryl cGMP had no effect on IL-1 production, this finding supporting the concept that a cGMP-independent pathway is involved in the intracellular signalling of NO+. Together these results point out that NO, depending on its redox form, is able to modulate IL-1 production in cultured colonic epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document