Influence of carbonate coarse aggregate properties on surface resistivity of high performance concrete

2021 ◽  
Vol 312 ◽  
pp. 125402
Author(s):  
Bharath Melugiri Shankaramurthy ◽  
Kejin Wang ◽  
Franciszek Hasiuk
2018 ◽  
Vol 49 ◽  
pp. 00079
Author(s):  
Krzysztof Ostrowski

Self-Compacting High Performance Concrete (SCHPC) presents a crucial step in the development of concrete technology. The most important features of self-consolidating concrete are flowability, segregation resistance and passing ability. Generally, the rheological properties are modified by effective superplasticisers and water to binder ratio. The aim of this study is to focus on the important aspect of the impact of shape of the coarse aggregate on fresh concrete mixture properties, strength and deformability of SCHPC. Coarse aggregate is a significant proportion of the concrete volume and therefore has a meaningful influence on its quality. By appropriate selection of the shape of the grain aggregate, it is possible to affect the rheological parameters of concrete. The results presented in this study indicated that the shape of the grains of coarse aggregate has an impact on the strength and stiffness of SCHPC. Moreover, the occurrence of irregular grains of coarse aggregate causes lower slump flow and higher plastic viscosity in comparison to concrete mixtures with regular grains only. The research presented in this article is part of the author's wider research devoted to this issue.


2005 ◽  
Vol 32 (6) ◽  
pp. 1103-1113 ◽  
Author(s):  
M Lachemi ◽  
K M.A Hossain ◽  
V Lambros

Self-consolidating concrete (SCC) is a new generation of high performance concrete known for its excellent deformability and high resistance to segregation and bleeding. Lack of information regarding in situ properties and structural performance of SCC is one of the main barriers to its acceptance in the construction industry. There is some concern among researchers and designers that SCC may not be strong enough in shear because of some uncertainties in mechanisms resisting shear — notably the aggregate interlock mechanism. Because of the presence of comparatively smaller amount of coarse aggregates in SCC, the fracture planes are relatively smooth as compared with normal concrete (NC) that may reduce the shear resistance of concrete by reducing the aggregate interlock between the fracture surfaces. The paper compares the shear resistance of SCC and NC based on the results of an experimental investigation on 18 flexurally reinforced beams without shear reinforcements. The test parameters include concrete type, maximum size of coarse aggregate, coarse aggregate content, and beam shear span-to-depth ratio. Shear strength, shear ductility, crack patterns, and failure modes of all experimental beams are compared to analyze the shear resistance mechanisms of SCC and NC beams in both pre- and post-cracking stages. The recommendations of this paper can be of special interest to designers considering the use of SCC in structural applications.Key words: self-consolidating concrete, shear resistance, shear resistance factor, aggregate interlock, dowel action.


2014 ◽  
Vol 629-630 ◽  
pp. 96-103 ◽  
Author(s):  
Juan Yang ◽  
Gai Fei Peng ◽  
Yu Xin Gao ◽  
Hui Zhang

Ultra-high performance concrete (UHPC) incorporating coarse aggregate was prepared with common raw materials. Fresh concrete had excellent good workability with slump of 265 mm and slump spread of 673 mm. Compressive strength of UHPC at 56 d reached 150 MPa. However, UHPC exhibited high brittleness in terms of spalling failure which occurred during compression loading.The ratio of splitting tensile strength to compressive strength of about 1/18 and the ratio of flexural strength to compressive strength of about 1/14 at 56 d were also associated with the brittleness of UHPC in this research. Mineral admixtures and fluidity of fresh concrete influenced compressive strength of UHPC significantly. Moreover, UHPC had excellent permeation-related durability but considerable shrinkage. Autogenous shrinkage of UHPC was less than half of free shrinkage, for which the reason is unknown and needs further research.


2018 ◽  
Vol 175 ◽  
pp. 321-332 ◽  
Author(s):  
Raja Rizwan Hussain ◽  
Ahmed B. Shuraim ◽  
Fahid Aslam ◽  
Abdulrahman M.A. Alhozaimy ◽  
Mohammed M. Al-Humaiqani

2021 ◽  
Vol 920 (1) ◽  
pp. 012005
Author(s):  
M Z A M Zahid ◽  
B H A Bakar ◽  
F M Nazri ◽  
H Alasmari ◽  
M F P M Latiff ◽  
...  

Abstract This current study attempts to investigate the mechanical, durability as well as rheology properties of Ultra-High Performance Concrete (UHPC) with low cement content and using coarse aggregate. The cement content used in UHPC mix in current study was 800 kg/m3. The slump flow, compressive strength, splitting tensile strength, modulus of elasticity, water absorption and water penetration tests were conducted to determine the workability, mechanical and durability properties of explored UHPC mixture. The test results show that the above properties were exceptional and comparable with other UHPC mixtures.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6354
Author(s):  
Fanghong Wu ◽  
Yanqin Zeng ◽  
Ben Li ◽  
Xuetao Lyu

This paper presents an experimental investigation of flexural behavior of circular ultra-high-performance concrete with coarse aggregate (CA-UHPC)-filled steel tubes (CA-UHPCFSTs). A total of seven flexural members were tested under a four-point bending load. The failure modes, overall deflection curves, moment-versus-curvature relationships, moment-versus-strain curves, strain distribution curves, ductility, flexural stiffness and ultimate flexural capacity were evaluated. The results indicate that the CA-UHPCFSTs under bending behaved in a good ductile manner. The CA-UHPC strength has a limited effect on the ultimate flexural capacity, while the addition of steel fiber can improve the ultimate flexural capacity. Increasing the steel tube thickness leads to higher flexural stiffness and ultimate flexural capacity. There is a significant confinement effect between the steel tube and the CA-UHPC core in the compressive zone and centroidal plane after the specimen enters the elastic-plastic stage, while the confinement effect in the tensile zone is minimal. Moreover, the measured flexural stiffness and ultimate flexural capacity were compared with the predictions using various design specifications. Two empirical formulas for calculating the initial and serviceability-level flexural stiffness of CA-UHPCFSTs are developed. Further research is required to propose the accurate design formula for the ultimate flexural capacity of CA-UHPCFSTs.


Sign in / Sign up

Export Citation Format

Share Document