morchella importuna
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 22)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yingyin Xu ◽  
Liyuan Xie ◽  
Jie Tang ◽  
Xiaolan He ◽  
Zhiyuan Zhang ◽  
...  

Morchella importuna, as an edible fungus, has various health benefits. However, the effects of M. importuna on intestinal health are rarely investigated. Hence, this study aims to ascertain the influences of flavones from the fruiting bodies of M. importuna (hereinafter abbreviated as MIF) on dextran sulfate sodium (DSS)-induced damage to intestinal epithelial barrier in C57BL/6J mice. In this (14-day) study, 144 C57BL/6J mice were divided into four groups: (1) Control; (2) DSS treatment; (3) DSS treatment + 100 mg/kg MIF (LMIF); (4) DSS treatment + 200 mg/kg MIF (HMIF). On days 8-14, mice in the challenged groups were challenged with 3.5% DSS, while the control group received an equal volume of normal saline. Then, serum and intestinal samples were obtained from all mice. The results showed that MIF ingestion enhanced intestinal integrity in DSS-challenged mice, as evinced by the elevated (p < 0.05) abundances of occludin, claudin-1, and zonula occludens-1 proteins. Meanwhile, MIF ingestion reduced (p < 0.05) the colonic interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) concentrations and increased the superoxide dismutase and catalase activities and Shannon and Simpson indices in DSS-challenged mice. Moreover, MIF ingestion reduced (p < 0.05) the abundance of phospho-nuclear factor (NF)-κB and increased the abundance of phospho-Nrf2 in DSS-challenged mice. Taken together, MIF protects against intestinal barrier injury in C57BL/6J mice via a mechanism that involves inhibiting NF-κB activation and promoting Nrf2 activation, as well as regulating intestinal microbiota.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chuan Xiong ◽  
Ping Li ◽  
Qiang Luo ◽  
Chia Wei Phan ◽  
Qiang Li ◽  
...  

Morels (Morchella spp.) are a genus of edible fungi with important economic and medicinal value. In this study, a novel peptide (MIPP) was extracted from the fruiting bodies of Morchella importuna using gel filtration chromatography. Structural analysis showed that the molecular mass of MIPP is 831 Da, and it has a simple amino acid sequence: Ser-Leu-Ser-Leu-Ser-Val-Ala-Arg. To explore the antitumor activity of MIPP, the effect of MIPP on HeLa cell apoptosis and the underlying preventative mechanisms were investigated. Results showed that MIPP reduced the viability of HeLa cells in a concentration-dependent manner. TUNEL analysis and flow cytometric examination showed that MIPP decreased cell proliferation via a mitochondrial-dependent pathway, as manifested by downregulation of Bcl-2/Bax, promotion of the movement of cytochrome C from the mitochondria to the cytoplasm, and triggering of caspase-9 and caspase-3. Therefore, MIPP may be a promising tumor-preventive agent, especially in human cervical cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingyin Xu ◽  
Liyuan Xie ◽  
Jie Tang ◽  
Xiaolan He ◽  
Zhiyuan Zhang ◽  
...  

This study aimed to investigate the effects of Morchella importuna polysaccharides (MIPs) on carbon tetrachloride (CCl4)-induced hepatic damage in mice. A total of 144 female mice were randomly assigned to four treatment groups, namely, control, CCl4, low-dose MIP (LMIP) group, and high-dose MIP (HMIP) group. After the 10-day experiment, serum and liver were sampled for biochemical and metabolomic analyses. The HMIPs markedly decreased the liver weight under CCl4 intoxication. Furthermore, the significantly elevated concentrations of five serum biochemical parameters, including alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, and total bile acid under CCl4 treatment were subverted by MIP administration in a dose-dependent manner. Moreover, MIPs relieved the increased hepatic malonaldehyde and protein carbonyl content and the decreased superoxide dismutase and catalase contents caused by CCl4 intoxication. There was also a dose-dependent decrease in the CCl4-induced inflammatory indices, such as the levels of interleukin-1, interleukin-6, tumor necrosis factor-alpha, and myeloperoxidase, with MIP administration. Subsequent ultra-high performance liquid chromatography–tandem mass spectrometry-based serum metabolomics identified nine metabolites between the control and CCl4 groups and 10 metabolites between the HMIP and CCl4 groups, including some critical metabolites involved in flavonoid biosynthesis, amino acid metabolism, energy metabolism, and toxicant degradation. These novel findings indicate that MIPs may be of therapeutic value in alleviating the oxidative stress and inflammation caused by CCl4. Liquid chromatography-mass spectrometry-based metabolomics provides a valuable opportunity for identifying potential biomarkers and elucidating the protective mechanisms of medicinal mushrooms against hepatic oxidative injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
YingLi Cai ◽  
XiaoLong Ma ◽  
QianQian Zhang ◽  
FuQiang Yu ◽  
Qi Zhao ◽  
...  

Morels (Morchella sp.) are economically important edible macro-fungi, which can grow on various synthetic or semi-synthetic media. However, the complex nutritional metabolism and requirements of these fungi remain ill-defined. This study, based on the plant biomass commonly used in the artificial cultivation of morels, assessed and compared the growth characteristics and extracellular enzymes of Morchella importuna cultivated on glucose, rice straw, sawdust, wheat grain, and a mixture of equal proportions of the three latter plant substrates (MIX). M. importuna could grow on all five tested media but displayed significant variations in mycelial growth rate, biomass, and sclerotium yield on the different media. The most suitable medium for M. importuna was wheat and wheat-containing medium, followed by glucose, while rice straw and sawdust were the least suitable. A total of 268 secretory proteins were identified by liquid chromatography coupled with tandem mass spectrometry detection. Functional classification and label-free comparative analysis of these proteins revealed that carbohydrate-active enzyme (CAZYme) proteins were the predominant component of the secretome of M. importuna, followed by protease, peptidase, and other proteins. The abundances of CAZYme proteins differed among the tested media, ranging from 64% on glucose to 88% on rice straw. The CAZYme classes of glycoside hydrolases and carbohydrate-binding module were enriched in the five secretomes. Furthermore, the enzyme activities of CMCase, lignase, amylase, xylase, pNPCase, and pNPGase were detected during the continuous culture of M. importuna in MIX medium, and the relative expression of the corresponding genes were detected by quantitative real-time PCR. The combined data of growth potential, secretome, extracellular enzyme activity, and gene expression on different substrates inferred that M. importuna was weak in lignocellulose degradation but a good starch decomposer. Specifically, in terms of the degradation of cellulose, the ability to degrade cellulose into oligosaccharides was weaker compared with further degradation into monosaccharides, and this might be the speed-limiting step of cellulose utilization in M. importuna. In addition, M. importuna had a strong ability to decompose various hemicellulose glycosidic bonds, especially α- and β-galactosidase. Only a very few lignin-degradation-related proteins were detected, and these were in low abundance, consistent with the presence of weak lignin degradation ability. Furthermore, the presence of lipase and chitinase implied that M. importuna was capable of decomposition of its own mycelia in vitro. The study provides key data that facilitates a further understanding of the complex nutritional metabolism of M. importuna.


Sign in / Sign up

Export Citation Format

Share Document