scholarly journals Leaf Surface Reflectance Does Not Affect Biophysical Traits Modelling from VIS-NIR Spectra in Plants with Sparsely Distributed Trichomes

2021 ◽  
Vol 13 (20) ◽  
pp. 4144
Author(s):  
Eva Neuwirthová ◽  
Zuzana Lhotáková ◽  
Petr Lukeš ◽  
Jana Albrechtová

In this study, we examine leaf reflectance as the main optical property used in remote sensing of vegetation. The total leaf reflectance consists of two main components: a diffuse component, originating from the leaf interior, and a component reflected directly from the leaf surface. The latter contains specular (mirror-like) reflectance (SR) and surface particle scattering, driven by the surface roughness. Our study aimed to (1) reveal the effects of key leaf structural traits on SR in 400–2500 nm, and (2) compare the performance of PLSR models of leaf biophysical properties based on the total reflectance and SR removal reflectance. Four Arabidopsis thaliana structural surface mutants and six Hieracium species differing in trichome properties were studied. PCA did not reveal any systematic effect of trichome density, length, and morphology on SR. Therefore, the results do not support the hypothesis that leaves with denser and longer trichomes have lower SR and higher total reflectance than the smooth leaves. SR removal did not remarkably improve PLSR models of biophysical traits (up to 2% of RMSE). Thus, in herbaceous dorsiventral leaves with relatively sparse trichomes of various morphology and without apparent waxy surface, we cannot confirm that SR removal significantly improves biophysical trait prediction.

2013 ◽  
Vol 353-356 ◽  
pp. 430-435
Author(s):  
Rong Di Liu ◽  
Jian Guo Zheng ◽  
Zhi Yuan Li

A series of soil-structure shear tests was taken by self-made large single shear apparatus and the main factors affecting behavior of the interface are studied. It was shown that the deformation and mechanical properties are determined by the roughness of structural surface, particle size distribution and normal stress. The interface deformation includes the shear deformation of the soil near the structure due to the constraint of structural surface and the slipping deformation of soil-structure interface, they happen at the same time and interact each other . The thickness of the interface element is 4 to 5 times of the average particle diameter away from the structure surface.


2019 ◽  
Vol 70 (2) ◽  
pp. 355-360
Author(s):  
Gheorghe Dobra ◽  
Sorin Iliev ◽  
Nicolae Anghelovici ◽  
Lucian Cotet ◽  
Laurentiu Filipescu

The purity, structural surface, particle dimensions, particle size distribution, and the associated reactivity of chemical and surface properties are the most important and most required properties of alumina hydrate special brands. The purpose of this paper concerns the common metallic impurities accumulation on the surface of alumina hydrate particles, during the sodium aluminates decomposition in liquid phase, during the entire aluminum hydroxide crystallization stage in the Bayer technology.


Author(s):  
Yu-Hsuan Tu ◽  
Stuart Phinn ◽  
Kasper Johansen ◽  
Andrew Robson

UAS-based multi-spectral imagery is becoming increasingly popular for the improved monitoring and managing of various horticultural crops. However, for UAS data to be used as an industry standard for assessing tree structure and condition as well as production parameters, it is imperative that the appropriate data collection and pre-processing protocols are established to enable multi-temporal comparison. There are several UAS-based radiometric correction methods commonly used for precision agricultural purposes. However, their relative accuracies have not been assessed for data acquired in complex horticultural environments. This study assessed the variations in estimated surface reflectance values of different radiometric corrections applied to multi-spectral UAS imagery acquired in both avocado and banana orchards. We found that inaccurate calibration panel measurements, inaccurate signal-to-reflectance conversion, and high variation in geometry between illumination, surface, and sensor viewing produced significant radiometric variations in at-surface reflectance estimates. Potential solutions to address these limitations included appropriate panel deployment, site-specific sensor calibration, and appropriate BRDF correction. Future UAS based horticultural crop monitoring can benefit from the proposed solutions to radiometric corrections to ensure they are using comparable image-based maps of multi-temporal biophysical properties.


Author(s):  
Vern C. Vanderbilt ◽  
Craig S. Daughtry ◽  
Robert P. Dahlgren

2019 ◽  
Vol 11 (13) ◽  
pp. 1572 ◽  
Author(s):  
Qiu ◽  
Chen ◽  
Croft ◽  
Li ◽  
Zhang ◽  
...  

Leaf chlorophyll content plays a vital role in plant photosynthesis. The PROSPECT model has been widely used for retrieving leaf chlorophyll content from remote sensing data over various plant species. However, despite wide variations in leaf surface reflectance across different plant species and environmental conditions, leaf surface reflectance is assumed to be the same for different leaves in the PROSPECT model. This work extends the PROSPECT model by taking into account the variation of leaf surface reflection. In the modified model named PROSPECT-Rsurf, an additional surface layer with a variable refractive index is bounded on the N elementary layers. Leaf surface reflectance (Rs) is characterized by the difference between the refractive indices of leaf surface and interior layers. The specific absorption coefficients of the leaf total chlorophyll and carotenoids were recalibrated using a cross-calibration method and the refractive indices of leaf surface and interior layers were obtained during model inversion. Chlorophyll content (Cab) retrieval and spectral reconstruction in the visible spectral region (VIS, 400–750 nm) were greatly improved using PROSPECT-Rsurf, especially for leaves covered by heavy wax or hard cuticles that lead to high surface reflectance. The root mean square error (RMSE) of chlorophyll estimates decreased from 11.1 µg/cm2 to 8.9 µg/cm2 and the Pearson’s correlation coefficient (r) increased from 0.81 to 0.88 (p < 0.01) for broadleaf samples in validation, compared to PROSPECT-5. For needle leaves, r increased from 0.71 to 0.89 (p < 0.01), but systematic overestimation of Cab was found due to the edge effects of needles. After incorporating the edge effects in PROSPECT-Rsurf, the overestimation of Cab was alleviated and its estimation was improved for needle leaves. This study explores the influence of leaf surface reflectance on Cab estimation at the leaf level. By coupling PROSPECT-Rsurf with canopy models, the influence of leaf surface reflectance on canopy reflectance and therefore canopy chlorophyll content retrieval can be investigated across different spatial and temporal scales.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
W. J. Abramson ◽  
H. W. Estry ◽  
L. F. Allard

LaB6 emitters are becoming increasingly popular as direct replacements for tungsten filaments in the electron guns of modern electron-beam instruments. These emitters offer order of magnitude increases in beam brightness, and, with appropriate care in operation, a corresponding increase in source lifetime. They are, however, an order of magnitude more expensive, and may be easily damaged (by improper vacuum conditions and thermal shock) during saturation/desaturation operations. These operations typically require several minutes of an operator's attention, which becomes tedious and subject to error, particularly since the emitter must be cooled during sample exchanges to minimize damage from random vacuum excursions. We have designed a control system for LaBg emitters which relieves the operator of the necessity for manually controlling the emitter power, minimizes the danger of accidental improper operation, and makes the use of these emitters routine on multi-user instruments.Figure 1 is a block schematic of the main components of the control system, and Figure 2 shows the control box.


Author(s):  
Emil Bernstein

An interesting method for examining structures in g. pig skin has been developed. By modifying an existing technique for splitting skin into its two main components—epidermis and dermis—we can in effect create new surfaces which can be examined with the scanning electron microscope (SEM). Although this method is not offered as a complete substitute for sectioning, it provides the investigator with a means for examining certain structures such as hair follicles and glands intact. The great depth of field of the SEM complements the technique so that a very “realistic” picture of the organ is obtained.


Sign in / Sign up

Export Citation Format

Share Document