scholarly journals Cortical Stimulation Paired With Volitional Unimanual Movement Affects Interhemispheric Communication

2021 ◽  
Vol 15 ◽  
Author(s):  
Richy Yun ◽  
Andrew R. Bogaard ◽  
Andrew G. Richardson ◽  
Stavros Zanos ◽  
Steve I. Perlmutter ◽  
...  

Cortical stimulation (CS) of the motor cortex can cause excitability changes in both hemispheres, showing potential to be a technique for clinical rehabilitation of motor function. However, previous studies that have investigated the effects of delivering CS during movement typically focus on a single hemisphere. On the other hand, studies exploring interhemispheric interactions typically deliver CS at rest. We sought to bridge these two approaches by documenting the consequences of delivering CS to a single motor cortex during different phases of contralateral and ipsilateral limb movement, and simultaneously assessing changes in interactions within and between the hemispheres via local field potential (LFP) recordings. Three macaques were trained in a unimanual reaction time (RT) task and implanted with epidural or intracortical electrodes over bilateral motor cortices. During a given session CS was delivered to one hemisphere with respect to movements of either the contralateral or ipsilateral limb. Stimulation delivered before contralateral limb movement onset shortened the contralateral limb RT. In contrast, stimulation delivered after the end of contralateral movement increased contralateral RT but decreased ipsilateral RT. Stimulation delivered before ipsilateral limb movement decreased ipsilateral RT. All other stimulus conditions as well as random stimulation and periodic stimulation did not have consistently significant effects on either limb. Simultaneous LFP recordings from one animal revealed correlations between changes in interhemispheric alpha band coherence and changes in RT, suggesting that alpha activity may be indicative of interhemispheric communication. These results show that changes caused by CS to the functional coupling within and between precentral cortices is contingent on the timing of CS relative to movement.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sumiya Shibata ◽  
Tatsunori Watanabe ◽  
Yoshihiro Yukawa ◽  
Masatoshi Minakuchi ◽  
Ryota Shimomura ◽  
...  

AbstractTranscranial static magnetic stimulation (tSMS) is a novel non-invasive brain stimulation technique that reduces cortical excitability at the stimulation site. We investigated the effects of tSMS over the left primary motor cortex (M1) for 20 min on the local electroencephalogram (EEG) power spectrum and interregional EEG coupling. Twelve right-handed healthy subjects participated in this crossover, double-blind, sham-controlled study. Resting-state EEG data were recorded for 3 min before the intervention and 17 min after the beginning of the intervention. The power spectrum at the left central electrode (C3) and the weighted phase lag index (wPLI) between C3 and the other electrodes was calculated for theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequencies. The tSMS significantly increased theta power at C3 and the functional coupling in the theta band between C3 and the parietal midline electrodes. The tSMS over the left M1 for 20 min exhibited modulatory effects on local cortical activity and interregional functional coupling in the theta band. The neural oscillations in the theta band may have an important role in the neurophysiological effects induced by tSMS over the frontal cortex.


2017 ◽  
Vol 117 (4) ◽  
pp. 1524-1543 ◽  
Author(s):  
Michael E. Rule ◽  
Carlos E. Vargas-Irwin ◽  
John P. Donoghue ◽  
Wilson Truccolo

Determining the relationship between single-neuron spiking and transient (20 Hz) β-local field potential (β-LFP) oscillations is an important step for understanding the role of these oscillations in motor cortex. We show that whereas motor cortex firing rates and beta spiking rhythmicity remain sustained during steady-state movement preparation periods, β-LFP oscillations emerge, in contrast, as short transient events. Single-neuron mean firing rates within and outside transient β-LFP events showed no differences, and no consistent correlation was found between the beta oscillation amplitude and firing rates, as was the case for movement- and visual cue-related β-LFP suppression. Importantly, well-isolated single units featuring beta-rhythmic spiking (43%, 125/292) showed no apparent or only weak phase coupling with the transient β-LFP oscillations. Similar results were obtained for the population spiking. These findings were common in triple microelectrode array recordings from primary motor (M1), ventral (PMv), and dorsal premotor (PMd) cortices in nonhuman primates during movement preparation. Although beta spiking rhythmicity indicates strong membrane potential fluctuations in the beta band, it does not imply strong phase coupling with β-LFP oscillations. The observed dissociation points to two different sources of variation in motor cortex β-LFPs: one that impacts single-neuron spiking dynamics and another related to the generation of mesoscopic β-LFP signals. Furthermore, our findings indicate that rhythmic spiking and diverse neuronal firing rates, which encode planned actions during movement preparation, may naturally limit the ability of different neuronal populations to strongly phase-couple to a single dominant oscillation frequency, leading to the observed spiking and β-LFP dissociation. NEW & NOTEWORTHY We show that whereas motor cortex spiking rates and beta (~20 Hz) spiking rhythmicity remain sustained during steady-state movement preparation periods, β-local field potential (β-LFP) oscillations emerge, in contrast, as transient events. Furthermore, the β-LFP phase at which neurons spike drifts: phase coupling is typically weak or absent. This dissociation points to two sources of variation in the level of motor cortex beta: one that impacts single-neuron spiking and another related to the generation of measured mesoscopic β-LFPs.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Shuai Cui ◽  
Shuqi Yao ◽  
Chunxiao Wu ◽  
Lulu Yao ◽  
Peidong Huang ◽  
...  

The descending motor nerve conduction of voluntary swallowing is mainly launched by primary motor cortex (M1). M1 can activate and regulate peripheral nerves (hypoglossal) to control the swallowing. Acupuncture at “Lianquan” acupoint (CV23) has a positive effect against poststroke dysphagia (PSD). In previous work, we have demonstrated that electroacupuncture (EA) could regulate swallowing-related motor neurons and promote swallowing activity in the essential part of central pattern generator (CPG), containing nucleus ambiguus (NA), nucleus of the solitary tract (NTS), and ventrolateral medulla (VLM) under the physiological condition. In the present work, we have investigated the effects of EA on the PSD mice in vivo and sought evidence for PSD improvement by electrophysiology recording and laser speckle contrast imaging (LSCI). Four main conclusions can be drawn from our study: (i) EA may enhance the local field potential in noninfarction area of M1, activate the swallowing-related neurons (pyramidal cells), and increase the motor conduction of noninfarction area in voluntary swallowing; (ii) EA may improve the blood flow in both M1 on the healthy side and deglutition muscles and relieve PSD symptoms; (iii) EA could increase the motor conduction velocity (MCV) in hypoglossal nerve, enhance the EMG of mylohyoid muscle, alleviate the paralysis of swallowing muscles, release the substance P, and restore the ability to drink water; and (iv) EA can boost the functional compensation of M1 in the noninfarction side, strengthen the excitatory of hypoglossal nerve, and be involved in the voluntary swallowing neural control to improve PSD. This research provides a timely and necessary experimental evidence of the motor neural regulation in dysphagia after stroke by acupuncture in clinic.


2017 ◽  
Vol 64 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Javier M. Antelis ◽  
Luis Montesano ◽  
Ander Ramos-Murguialday ◽  
Niels Birbaumer ◽  
Javier Minguez

2018 ◽  
Vol 12 ◽  
Author(s):  
Gonzalo Martín-Vázquez ◽  
Toshitake Asabuki ◽  
Yoshikazu Isomura ◽  
Tomoki Fukai

2000 ◽  
Vol 83 (2) ◽  
pp. 895-906 ◽  
Author(s):  
John H. Martin ◽  
Laura Donarummo ◽  
Antony Hacking

This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3–7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous muscimol infusion. We inactivated the right (previously active) and then the left (previously silenced) sensory motor cortex. Inactivation of the ipsilateral (right) sensory motor cortex produced a further increase in systematic error and less frequent normal grasping. Reinactivation of the contralateral (left) cortex produced larger increases in reaching and grasping impairments than those produced by ipsilateral inactivation. This suggests that the impaired limb receives bilateral sensory motor cortex control but that control by the contralateral (initially silenced) cortex predominates. Our data are consistent with the hypothesis that the normal development of skilled motor behavior requires activity in sensory motor cortex during early postnatal life.


2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiao Zhang ◽  
Xiwen Geng ◽  
Min Li ◽  
Jinlu Xie ◽  
Guangheng Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document