scholarly journals Radiation Beam Pattern Control of UHF RFID Tag Antenna Design for Automotive License Plates

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2439
Author(s):  
Youchung Chung ◽  
Teklebrhan H. Berhe

This paper presents a design of a radio frequency identification (RFID) tag antenna in the ultra-high-frequency (UHF) range, which is applicable to a vehicular license plate attached to a vehicle bumper. The main goals are to first improve the identification ratio by controlling the radiation beam pattern and, second, to control the beam direction. Since every vehicle has a license plate, the available plate structure is used to design the antenna. The shape of the tag is rectangular and has a dimension of 525 mm × 116 mm, which is smaller than the typical size of standard plates, 540 mm × 120 mm, used in Europe and Korea. The fabricated tag antenna, the license plate, and the vehicular bumper are fixed by volt and nut. For vehicle tracking and identification, RFID readers are deployed on the road side. For efficient identification, a long distance passive UHF RFID license plate with a patch antenna is proposed to provide not only line-of-sight identification but also left and right beams. Unlike the general UHF tag antennas, in this paper, the patch antenna is designed to attach to the metal part of the car, the license plate holder. The beam patterns of the RFID tag antenna can be controlled by the patch antenna parameter values. The simulation result demonstrates that the proposed UHF RFID tag antenna has a beam radiation pattern as required at 920 MHz. In addition, the estimated read range of the proposed plate meets the requirement of RFID systems.

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1982 ◽  
Author(s):  
Jamal Zaid ◽  
Abdulhadi E. Abdulhadi ◽  
Tayeb A. Denidni

In this paper, a miniaturized Ultra High Frequency Radio Frequency Identification (UHF-RFID) tag-based sensor antenna using a magneto- dielectric substrate (MDS) for wireless identification and sensor applications is presented. Two models of RFID tag-based sensors are designed, fabricated and measured. The first model uses two RFID tags; both of the tags are incorporated with two RFID chips. A passive sensor is also integrated in one of the proposed tags to serve as a sensor node, while the other tag is used as a reference node. Based on the difference in the minimum power required to activate the reference and sensor nodes, the sensed data (temperature or humidity) can be determined. The magneto-dielectric substrate layer is placed underneath the patch antenna to reduce the size of the proposed sensor by about 75% compared to a conventional RFID tag-based sensor. The magneto-dielectric layer is thin enough to embed in the planer circuit. To reduce the size of the proposed sensor, a multi-port tag for including the reference and sensor node in one antenna is also presented. The proposed RFID tag-based sensors have several features such as small size, they are completely capable for two objectives at the same time and easy to integrate with a planer circuit.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2521
Author(s):  
Youchung Chung ◽  
Teklebrhan H. Berhe

In this paper, various locations of an Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tag on automotive license plates have been considered based on the radiation pattern of the tag antenna. A small, 130 × 50 mm, passive loop antenna type UHF RFID tag for an automotive license plate was simulated with an EM simulation CST program. It was designed to have a larger back-lobe radiation pattern since the front side of the tag faces the back side of the plate holder to protect the tag antenna from bugs and dust when the automobile runs. The tag was attached to the side of a license plate holder with a dimension of 520 × 110 mm, the typical size of the standard license plate. The reflection coefficient of the tag antenna is −21 dB at 920 MHz, and the gain of the tag antenna is 6.29 dBi at the back-lobe. The reading range of the tag antenna with the plate holder, which was measured in an open field, is about 10.3 m, and the reading range of the tag installed on the bumper from the front of the vehicle is 9.4 m. The tag antenna is small enough to apply to a real automobile, and it is applicable because it uses the back-lobe pattern, so it does not require an extra device for protection from damage.


Author(s):  
Evizal Evizal ◽  
Tharek Abdul Rahman ◽  
Sharul Kamal Abdul Rahim
Keyword(s):  
Uhf Rfid ◽  
Rfid Tag ◽  

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5460 ◽  
Author(s):  
Franck Kimetya Byondi ◽  
Youchung Chung

This paper presents a passive cavity type Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tag antenna having the longest read-range, and compares it with existing long-range UHF RFID tag antenna. The study also demonstrates mathematically and experimentally that our proposed longest-range UHF RFID cavity type tag antenna has a longer read-range than existing passive tag antennas. Our tag antenna was designed with 140 × 60 × 10 mm3 size, and reached 26 m measured read-range and 36.3 m mathematically calculated read-range. This UHF tag antenna can be applied to metal and non-metal objects. By adding a further sensing capability, it can have a great benefit for the Internet of Things (IoT) and wireless sensor networks (WSN).


2020 ◽  
pp. 004051752094890
Author(s):  
Yong Zhang ◽  
Jiyong Hu ◽  
Xiong Yan ◽  
Xudong Yang

This paper describes the design of a novel ultrahigh frequency radio frequency identification (UHF RFID) tag thread that mainly consisted of the common yarn and the normal mode helix dipole antenna. The linear dipole antenna for the UHF RFID tag thread was too long to miniaturize the tag. In order to maximize the read performance and miniaturize the size of the tag, the basic antenna structure parameters, such as the helical pitch and single arm length, were optimized by analyzing the radiation parameter S11 of the normal mode helix dipole antenna based on simulation experiments. The simulation experiments started with optimizing the single arm length to obtain the minimum of the S11 parameter at resonant frequency, then the helical pitch was further optimized to limit the resonant frequency to the UHF range. The simulation results showed the resonant frequency rises with an increase of helical pitch and declines with an increase of single arm length. Furthermore, a series of UHF RFID tag threads with good performance from the simulation cases were prepared, and the performance of the optimized tag was validated. Generally, the UHF RFID tag thread with optimized helix dipole antenna could reduce the axial length of the tag by 57% and improve the reading range by 500%, and its performance was greatly superior to that of the UHF RFID tag thread with the classical linear dipole antenna.


2020 ◽  
Vol 68 (1) ◽  
pp. 152-160
Author(s):  
Shin-Rou Lee ◽  
Eng-Hock Lim ◽  
Fwee-Leong Bong ◽  
Boon-Kuan Chung

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 713 ◽  
Author(s):  
Fuad Erman ◽  
Effariza Hanafi ◽  
Eng-Hock Lim ◽  
Wan Amirul Wan Mohd Mahyiddin ◽  
Sulaiman Wadi Harun ◽  
...  

This article describes the design of an Ultra-High Frequency (UHF) miniature folded dipole Radio Frequency Identification (RFID) tag antenna that can be mountable on metallic objects. The compact tag antenna is formed from symmetric C-shaped resonators connected with additional arms embedded into the outer strip lines for miniaturization purposes. It is loaded with outer strip lines, resulting in a flexible tuning method that is capable of matching the integrated circuit (IC) chip’s impedance. The proposed tag is fabricated on a single layer of Polytetrafluoroethylene (PTFE) substrate. It has simple structure and does not require any metallic vias or shorting plate. The miniature tag antenna with a size of 82.75 × 19.5 × 1.5   mm 3 yields a total realized gain of − 0.53   dB at the resonance frequency when attached to a 40 × 40   cm 2 metal plate. The presented design utilizes a European RFID band, and the simulated results of realized gain, read range, and input impedance are verified with measurement results.


2013 ◽  
Vol 816-817 ◽  
pp. 957-961
Author(s):  
Feng Ying Huang ◽  
Jun Wang ◽  
Yu Sen Xu ◽  
Ji Wei Huang

This paper proposes a new synchronized serial-parallel CRC(Cycle Redundancy Check) with PIE(Pulse Interval Encoding) decoding circuit for the UHF(Ultra-High Frequency) RFID(Radio Frequency Identification), which is based on the ISO/IEC 18000-6C standards protocol. The parallel algorithm of CRC circuit is derived, and the serial or parallel CRC circuit on RFID tag chip is evaluated in this paper. Finally, the designed circuit is simulated and analyzed on the FPGA platform. Simulation results show that the proposed circuit meets the communication requirement of the protocol and addresses the problem of low data processing rate of conventional serial CRC circuit, as well as implements 1 to 8 degree of parallelism of the parallel CRC circuit for UHF RFID.


Sign in / Sign up

Export Citation Format

Share Document