veterinary epidemiology
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 1)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12453
Author(s):  
Locksley L. McV. Messam ◽  
Hsin-Yi Weng ◽  
Nicole W. Y. Rosenberger ◽  
Zhi Hao Tan ◽  
Stephanie D. M. Payet ◽  
...  

Background Despite much discussion in the epidemiologic literature surrounding the use of null hypothesis significance testing (NHST) for inferences, the reporting practices of veterinary researchers have not been examined. We conducted a survey of articles published in Preventive Veterinary Medicine, a leading veterinary epidemiology journal, aimed at (a) estimating the frequency of reporting p values, confidence intervals and statistical significance between 1997 and 2017, (b) determining whether this varies by article section and (c) determining whether this varies over time. Methods We used systematic cluster sampling to select 985 original research articles from issues published in March, June, September and December of each year of the study period. Using the survey data analysis menu in Stata, we estimated overall and yearly proportions of article sections (abstracts, results-texts, results-tables and discussions) reporting p values, confidence intervals and statistical significance. Additionally, we estimated the proportion of p values less than 0.05 reported in each section, the proportion of article sections in which p values were reported as inequalities, and the proportion of article sections in which confidence intervals were interpreted as if they were significance tests. Finally, we used Generalised Estimating Equations to estimate prevalence odds ratios and 95% confidence intervals, comparing the occurrence of each of the above-mentioned reporting elements in one article section relative to another. Results Over the 20-year period, for every 100 published manuscripts, 31 abstracts (95% CI [28–35]), 65 results-texts (95% CI [61–68]), 23 sets of results-tables (95% CI [20–27]) and 59 discussion sections (95% CI [56–63]) reported statistical significance at least once. Only in the case of results-tables, were the numbers reporting p values (48; 95% CI [44–51]), and confidence intervals (44; 95% CI [41–48]) higher than those reporting statistical significance. We also found that a substantial proportion of p values were reported as inequalities and most were less than 0.05. The odds of a p value being less than 0.05 (OR = 4.5; 95% CI [2.3–9.0]) or being reported as an inequality (OR = 3.2; 95% CI [1.3–7.6]) was higher in the abstracts than in the results-texts. Additionally, when confidence intervals were interpreted, on most occasions they were used as surrogates for significance tests. Overall, no time trends in reporting were observed for any of the three reporting elements over the study period. Conclusions Despite the availability of superior approaches to statistical inference and abundant criticism of its use in the epidemiologic literature, NHST is substantially the most common means of inference in articles published in Preventive Veterinary Medicine. This pattern has not changed substantially between 1997 and 2017.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2743
Author(s):  
Linh Manh Pham ◽  
Nikos Parlavantzas ◽  
Huy-Ham Le ◽  
Quang Hung Bui

The spread of disease in livestock is an important research topic of veterinary epidemiology because it provides warnings or advice to organizations responsible for the protection of animal health in particular and public health in general. Disease transmission simulation programs are often deployed with different species, disease types, or epidemiological models, and each research team manages its own set of parameters relevant to their target diseases and concerns, resulting in limited cooperation and reuse of research results. Furthermore, these simulation and decision support tools often require a large amount of computational power, especially for models involving tens of thousands of herds with millions of individuals spread over a large geographical area such as a region or a country. It is a matter of fact that epidemic simulation programs are often heterogeneous, but they often share some common workflows including processing of input data and execution of simulation, as well as storage, analysis, and visualization of results. In this article, we propose a novel architectural framework for simultaneously deploying any epidemic simulation program both on premises and on the cloud to improve performance and scalability. We also conduct some experiments to evaluate the proposed architectural framework on some aspects when applying it to simulate the spread of African swine fever in Vietnam.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Anne Meyer ◽  
Céline Faverjon ◽  
Miel Hostens ◽  
Arjan Stegeman ◽  
Angus Cameron

Abstract Background The FAIR (Findable, Accessible, Interoperable, Reusable) principles were proposed in 2016 to set a path towards reusability of research datasets. In this systematic review, we assessed the FAIRness of datasets associated with peer-reviewed articles in veterinary epidemiology research published since 2017, specifically looking at salmonids and dairy cattle. We considered the differences in practices between molecular epidemiology, the branch of epidemiology using genetic sequences of pathogens and hosts to describe disease patterns, and non-molecular epidemiology. Results A total of 152 articles were included in the assessment. Consistent with previous assessments conducted in other disciplines, our results showed that most datasets used in non-molecular epidemiological studies were not available (i.e., neither findable nor accessible). Data availability was much higher for molecular epidemiology papers, in line with a strong repository base available to scientists in this discipline. The available data objects generally scored favourably for Findable, Accessible and Reusable indicators, but Interoperability was more problematic. Conclusions None of the datasets assessed in this study met all the requirements set by the FAIR principles. Interoperability, in particular, requires specific skills in data management which may not yet be broadly available in the epidemiology community. In the discussion, we present recommendations on how veterinary research could move towards greater reusability according to FAIR principles. Overall, although many initiatives to improve data access have been started in the research community, their impact on the availability of datasets underlying published articles remains unclear to date.


2021 ◽  
Vol 7 ◽  
Author(s):  
Mark A. Stevenson

In the design of intervention and observational epidemiological studies sample size calculations are used to provide estimates of the minimum number of observations that need to be made to ensure that the stated objectives of a study are met. Justification of the number of subjects enrolled into a study and details of the assumptions and methodologies used to derive sample size estimates are now a mandatory component of grant application processes by funding agencies. Studies with insufficient numbers of study subjects run the risk of failing to identify differences among treatment or exposure groups when differences do, in fact, exist. Selection of a number of study subjects greater than that actually required results in a wastage of time and resources. In contrast to human epidemiological research, individual study subjects in a veterinary setting are almost always aggregated into hierarchical groups and, for this reason, sample size estimates calculated using formulae that assume data independence are not appropriate. This paper provides an overview of the reasons researchers might need to calculate an appropriate sample size in veterinary epidemiology and a summary of sample size calculation methods. Two approaches are presented for dealing with lack of data independence when calculating sample sizes: (1) inflation of crude sample size estimates using a design effect; and (2) simulation-based methods. The advantage of simulation methods is that appropriate sample sizes can be estimated for complex study designs for which formula-based methods are not available. A description of the methodological approach for simulation is described and a worked example provided.


Author(s):  
Amy C. Kinsley ◽  
Gianluigi Rossi ◽  
Matthew J. Silk ◽  
Kimberly VanderWaal

Author(s):  
Fayisa Wakgari Oljira

A literature-based review was made to assess the applications of GIS in veterinary epidemiology and its relevance in the prevention and control of animal diseases. GIS is “a powerful set of tools for collecting, retrieving, transforming, and displaying spatial data from the real world”. Overall, a GIS is a platform consisting of hardware, software, data, and people and encompasses a fundamental and universally applicable set of value-added tools for capturing, transforming, managing, analyzing, and presenting information that is geographically referenced. These data can be combined with population data and previous disease records for the prediction of diseases. Applications of GIS are very wide in all human activities. It is used for marketing studies, telecommunications, and the location of restaurants, museums, and hospitals; in tracking truck traffic; in establishing maps of animal population density by species or maps of changes in vegetation; in locating forests, rivers, and mountains and in determining soil compositions. The application of GIS to the veterinary field has been developed over the last decade. Specialized software is becoming more affordable and user friendly. GIS can be applied in veterinary epidemiology for investigation of complex disease problems, GIS is used for early warning systems, for recording and reporting disease information and for planning animal disease prevention and control program. One of the most useful functions of GIS in epidemiology is its utility in basic mapping. It is believed that GIS will play an important role in the control and eradication of epidemic Transboundary Animal Diseases (TADs). Thus training of veterinary staff on GIS, its tools, and applications are highly recommended.


Sign in / Sign up

Export Citation Format

Share Document