corrected flow time
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Jon-Émile S. Kenny ◽  
Igor Barjaktarevic ◽  
David C. Mackenzie ◽  
Mai Elfarnawany ◽  
Zhen Yang ◽  
...  

Abstract Objective Doppler ultrasonography of the common carotid artery is used to infer stroke volume change and a wearable Doppler ultrasound has been designed to improve this workflow. Previously, in a human model of hemorrhage and resuscitation comprising approximately 50,000 cardiac cycles, we found a strong, linear correlation between changing stroke volume, and measures from the carotid Doppler signal, however, optimal Doppler thresholds for detecting a 10% stroke volume change were not reported. In this Research Note, we present these thresholds, their sensitivities, specificities and areas under their receiver operator curves (AUROC). Results Augmentation of carotid artery maximum velocity time integral and corrected flowtime by 18% and 4%, respectively, accurately captured 10% stroke volume rise. The sensitivity and specificity for these thresholds were identical at 89% and 100%. These data are similar to previous investigations in healthy volunteers monitored by the wearable ultrasound.


2021 ◽  
Vol 10 (12) ◽  
pp. 2676
Author(s):  
Seungho Jung ◽  
Jeongmin Kim ◽  
Sungwon Na ◽  
Won Seok Nam ◽  
Do-Hyeong Kim

Predicting fluid responsiveness in patients under mechanical ventilation with low tidal volume (VT) is challenging. This study evaluated the ability of carotid corrected flow time (FTc) assessed by ultrasound for predicting the fluid responsiveness during low VT ventilation. Patients under postoperative mechanical ventilation and clinically diagnosed with hypovolemia were enrolled. Carotid FTc and pulse pressure variation (PPV) were measured at VT of 6 and 10 mL/kg predicted body weight (PBW). FTc was calculated using both Bazett’s (FTcB) and Wodey’s (FTcW) formulas. Fluid responsiveness was defined as a ≥15% increase in the stroke volume index assessed by FloTrac/Vigileo monitor after administration of 8 mL/kg of balanced crystalloid. Among 36 patients, 16 (44.4%) were fluid responders. The areas under the receiver operating characteristic curves (AUROCs) for the FTcB at VT of 6 and 10 mL/kg PBW were 0.897 (95% confidence interval [95% CI]: 0.750–0.973) and 0.895 (95% CI: 0.748–0.972), respectively. The AUROCs for the FTcW at VT of 6 and 10 mL/kg PBW were 0.875 (95% CI: 0.722–0.961) and 0.891 (95% CI: 0.744–0.970), respectively. However, PPV at VT of 6 mL/kg PBW (AUROC: 0.714, 95% CI: 0.539–0.852) showed significantly lower accuracy than that of PPV at VT of 10 mL/kg PBW (AUROC: 0.867, 95% CI: 0.712–0.957; p = 0.034). Carotid FTc can predict fluid responsiveness better than PPV during low VT ventilation. However, further studies using automated continuous monitoring system are needed before its clinical use.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Hye Jin Kim ◽  
Yong Seon Choi ◽  
Seung Hyun Kim ◽  
Wootaek Lee ◽  
Ja-Young Kwon ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Jon-Émile S. Kenny ◽  
Igor Barjaktarevic ◽  
David C. Mackenzie ◽  
Andrew M. Eibl ◽  
Matthew Parrotta ◽  
...  

Abstract Background Change of the corrected flow time (Ftc) is a surrogate for tracking stroke volume (SV) in the intensive care unit. Multiple Ftc equations have been proposed; many have not had their diagnostic characteristics for detecting SV change reported. Further, little is known about the inherent Ftc variability induced by the respiratory cycle. Materials and methods Using a wearable Doppler ultrasound patch, we studied the clinical performance of 11 Ftc equations to detect a 10% change in SV measured by non-invasive pulse contour analysis; 26 healthy volunteers performed a standardized cardiac preload modifying maneuver. Results One hundred changes in cardiac preload and 3890 carotid beats were analyzed. Most of the 11 Ftc equations studied had similar diagnostic attributes. Wodeys’ and Chambers’ formulae had identical results; a 2% change in Ftc detected a 10% change in SV with a sensitivity and specificity of 96% and 93%, respectively. Similarly, a 3% change in Ftc calculated by Bazett’s formula displayed a sensitivity and specificity of 91% and 93%. FtcWodey had 100% concordance and an R2 of 0.75 with change in SV; these values were 99%, 0.76 and 98%, 0.71 for FtcChambers and FtcBazetts, respectively. As an exploratory analysis, we studied 3335 carotid beats for the dispersion of Ftc during quiet breathing using the equations of Wodey and Bazett. The coefficient of variation of Ftc during quiet breathing for these formulae were 0.06 and 0.07, respectively. Conclusions Most of the 11 different equations used to calculate carotid artery Ftc from a wearable Doppler ultrasound patch had similar thresholds and abilities to detect SV change in healthy volunteers. Variation in Ftc induced by the respiratory cycle is important; measuring a clinically significant change in Ftc with statistical confidence requires a large sample of beats.


2018 ◽  
Vol 46 (11) ◽  
pp. e1040-e1046 ◽  
Author(s):  
Igor Barjaktarevic ◽  
William E. Toppen ◽  
Scott Hu ◽  
Elizabeth Aquije Montoya ◽  
Stephanie Ong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document