biomimetic nanomaterials
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Xinyu Zhang ◽  
Yanling Ma ◽  
Jipeng Wan ◽  
Jia Yuan ◽  
Diqing Wang ◽  
...  

Ferroptosis, as a recently discovered non-apoptotic programmed cell death with an iron-dependent form, has attracted great attention in the field of cancer nanomedicine. However, many ferroptosis-related nano-inducers encountered unexpected limitations such as immune exposure, low circulation time, and ineffective tumor targeting. Biomimetic nanomaterials possess some unique physicochemical properties which can achieve immune escape and effective tumor targeting. Especially, certain components of biomimetic nanomaterials can further enhance ferroptosis. Therefore, this review will provide a comprehensive overview on recent developments of biomimetic nanomaterials in ferroptosis-related cancer nanomedicine. First, the definition and character of ferroptosis and its current applications associated with chemotherapy, radiotherapy, and immunotherapy for enhancing cancer theranostics were briefly discussed. Subsequently, the advantages and limitations of some representative biomimetic nanomedicines, including biomembranes, proteins, amino acids, polyunsaturated fatty acids, and biomineralization-based ferroptosis nano-inducers, were further spotlighted. This review would therefore help the spectrum of advanced and novice researchers who are interested in this area to quickly zoom in the essential information and glean some provoking ideas to advance this subfield in cancer nanomedicine.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1757
Author(s):  
Wei Liu ◽  
Bo Chen ◽  
Haocheng Zheng ◽  
Yun Xing ◽  
Guiyuan Chen ◽  
...  

Radiotherapy (RT) remains one of the current main treatment strategies for many types of cancer. However, how to improve RT efficiency while reducing its side effects is still a large challenge to be overcome. Advancements in nanomedicine have provided many effective approaches for radiosensitization. Metal nanoparticles (NPs) such as platinum-based or hafnium-based NPs are proved to be ideal radiosensitizers because of their unique physicochemical properties and high X-ray absorption efficiency. With nanoparticles, such as liposomes, bovine serum albumin, and polymers, the radiosensitizing drugs can be promoted to reach the tumor sites, thereby enhancing anti-tumor responses. Nowadays, the combination of some NPs and RT have been applied to clinical treatment for many types of cancer, including breast cancer. Here, as well as reviewing recent studies on radiotherapy combined with inorganic, organic, and biomimetic nanomaterials for oncology, we analyzed the underlying mechanisms of NPs radiosensitization, which may contribute to exploring new directions for the clinical translation of nanoparticle-based radiosensitizers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhiyuan Feng ◽  
Hao Fan ◽  
Lin Cheng ◽  
Huan Zhang ◽  
Hong Fan ◽  
...  

In modern society, the incidence of cancer, inflammatory diseases, nervous system diseases, metabolic diseases, and cardiovascular diseases is on the rise. These diseases not only cause physical and mental suffering for patients, but also place an enormous burden on society. Early, non-invasive diagnosis of these diseases can reduce the physical and mental pain of patients and social stress. There is an urgent need for advanced materials and methods for non-invasive disease marker detection, large-scale disease screening, and early diagnosis. Biomimetic medical materials are synthetic materials designed to be biocompatible or biodegradable, then developed for use in the medical industry. In recent years, with the development of nanotechnology, a variety of biomimetic medical materials with advanced properties have been introduced. Biomimetic nanomaterials have made great progress in biosensing, bioimaging, and other fields. The latest advance of biomimetic nanomaterials in disease diagnosis has attracted tremendous interest. However, the application of biomimetic nanomaterials in disease diagnosis has not been reviewed. This review particularly focuses on the potential of biomimetic nanomaterials in non-invasive disease marker detection and disease diagnosis. The first part focuses on the properties and characteristics of different kinds of advanced biomimetic nanomaterials. In the second part, the recent cutting-edge methods using biosensors and bioimaging based on biomimetic nanomaterials for non-invasive disease diagnosis are reviewed. In addition, the existing problems and future development of biomimetic nanomaterials is briefly described in the third part. The application of biomimetic nanomaterials would provide a novel and promising diagnostic method for non-invasive disease marker detection, large-scale clinical screening, and diagnosis, promoting the exploitation of devices with better detection performance and the development of global clinical public health.


2021 ◽  
Vol 16 (1) ◽  
pp. 23-30
Author(s):  
Ying He

New nanomaterials (metal nanoclusters, graphene, etc.) are favored by researchers due to their unique properties and are widely used in biomedical detection. The excellent fluorescence characteristics of gold nanoclusters are utilized to develop a fast and highly sensitive bionic nanomaterial with non-label and dual functions, which can detect silver ions and mercury ions and study the particularity of TEM nanoparticle images. The particle segmentation of TEM nanoparticle images is studied to compare the traditional watershed algorithm and watershed transformation algorithm. The experiment results show that silver ions can enhance the fluorescence of gold nanoclusters to form gold-silver nanoclusters with strong yellow fluorescence, and mercury ions can quickly weaken the fluorescence of gold-silver nanoclusters. Based on the biomimetic nanomaterials, a dual-function fluorescent probe is designed to detect silver ions and mercury ions in lake with detection accuracy of 8 nM and 33 nM respectively; the sensing excitation of the fluorescent probe is further analyzed. Because the metal-enhanced fluorescence (MEF) effect enables the silver element and Au nanoparticles to form fluorescence-enhancing effect, the high metalphilic interaction between mercury ions and silver ions quenches the fluorescence effect of gold nanocluster; the rapid watershed transformation/region fusion method can achieve better particle image segmentation combined with the image segmentation algorithms of different TEM nanoparticles, which can be better applied to the characterization analysis of the preparation of gold nanomaterials.


Author(s):  
Chiara Martinelli

: Cancer is considered one of the most threatening diseases worldwide. Although many therapeutic approaches have been developed and optimized for ameliorating patient’s conditions and life expectancy, however it frequently remains an incurable pathology. Notably, conventional treatments may reveal inefficient in presence of metastasis development, multidrug resistance and inability to achieve targeted drug delivery. In the last decades, nanomedicine has gained a prominent role, due to the many properties ascribable to nanomaterials. It is worth mentioning their small size, their ability to be loaded with small drugs and bioactive molecules and the possibility to be functionalized for tumor targeting. Natural vehicles have been exploited, such as exosomes, and designed, such as liposomes. Biomimetic nanomaterials have been engineered, by modification with biological membrane coating. Several nanoparticles have already entered clinical trials and some liposomal formulations have been approved for therapeutic applications. In this review, natural and synthetic nanocarriers functionalized for actively targeting cancer cells will be described, focusing on their advantages respect to conventional treatments. Recent innovations related to biomimetic nanoparticles camouflaged with membranes isolated from different types of cells will be reported, together with their promising applications. Finally, a short overview on the latest advances in carrier-free nanomaterials will be provided.


2020 ◽  
Vol 63 (7) ◽  
pp. 1099-1112 ◽  
Author(s):  
Jianli Liu ◽  
Bin Cai ◽  
Lifeng Cui ◽  
Chun-Long Chen

Author(s):  
Ignasi Casanellas ◽  
Andrea García-Lizarribar ◽  
Anna Lagunas ◽  
Josep Samitier

Sign in / Sign up

Export Citation Format

Share Document