nanostructured sensors
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6166
Author(s):  
Sneha Verma ◽  
Souvik Ghosh ◽  
B.M.A. Rahman

Gold nanoantennas have been used in a variety of biomedical applications due to their attractive electronic and optical properties, which are shape- and size-dependent. Here, a periodic paired gold nanostructure exploiting surface plasmon resonance is proposed, which shows promising results for Refractive Index (RI) detection due to its high electric field confinement and diffraction limit. Here, single and paired gold nanostructured sensors were designed for real-time RI detection. The Full-Width at Half-Maximum (FWHM) and Figure-Of-Merit (FOM) were also calculated, which relate the sensitivity to the sharpness of the peak. The effect of different possible structural shapes and dimensions were studied to optimise the sensitivity response of nanosensing structures and identify an optimised elliptical nanoantenna with the major axis a, minor axis b, gap between the pair g, and heights h being 100 nm, 10 nm, 10 nm, and 40 nm, respectively. In this work, we investigated the bulk sensitivity, which is the spectral shift per refractive index unit due to the change in the surrounding material, and this value was calculated as 526–530 nm/RIU, while the FWHM was calculated around 110 nm with a FOM of 8.1. On the other hand, the surface sensing was related to the spectral shift due to the refractive index variation of the surface layer near the paired nanoantenna surface, and this value for the same antenna pair was calculated as 250 nm/RIU for a surface layer thickness of 4.5 nm.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1767
Author(s):  
Dario Morganti ◽  
Antonio Alessio Leonardi ◽  
Maria José Lo Faro ◽  
Gianluca Leonardi ◽  
Gabriele Salvato ◽  
...  

The ever-stronger attention paid to enhancing safety in the workplace has led to novel sensor development and improvement. Despite the technological progress, nanostructured sensors are not being commercially transferred due to expensive and non-microelectronic compatible materials and processing approaches. In this paper, the realization of a cost-effective sensor based on ultrathin silicon nanowires (Si NWs) for the detection of nitrogen dioxide (NO2) is reported. A modification of the metal-assisted chemical etching method allows light-emitting silicon nanowires to be obtained through a fast, low-cost, and industrially compatible approach. NO2 is a well-known dangerous gas that, even with a small concentration of 3 ppm, represents a serious hazard for human health. We exploit the particular optical and electrical properties of these Si NWs to reveal low NO2 concentrations through their photoluminescence (PL) and resistance variations reaching 2 ppm of NO2. Indeed, these Si NWs offer a fast response and reversibility with both electrical and optical transductions. Despite the macro contacts affecting the electrical transduction, the sensing performances are of high interest for further developments. These promising performances coupled with the scalable Si NW synthesis could unfold opportunities for smaller sized and better performing sensors reaching the market for environmental monitoring.


2021 ◽  
pp. 193-205
Author(s):  
José Sandoval-Cortés ◽  
Aidé Saénz-Galindo ◽  
J. A. Ascacio-Valdés ◽  
C. N. Aguilar

2020 ◽  
Vol MA2020-02 (16) ◽  
pp. 1470-1470
Author(s):  
Agnieszka Brzozka ◽  
Leszek Zaraska ◽  
Grzegorz Dariusz Sulka

2020 ◽  
Vol MA2020-02 (66) ◽  
pp. 3340-3340
Author(s):  
Michele Astolfi ◽  
Giulia Zonta ◽  
Nicolò Landini ◽  
Sandro Gherardi ◽  
Giorgio Rispoli ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1722 ◽  
Author(s):  
Pei-Sung Hung ◽  
Guang-Ren Wang ◽  
Wei-An Chung ◽  
Tze-Ting Chiang ◽  
Pu-Wei Wu

We demonstrate a water-based synthetic route to fabricate composite inverse opals for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Our process involves the conformal deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) and PEDOT/Au on the skeletons of Ni inverse opals via cyclic voltammetric scans (CV) to initiate the electropolymerization of 3,4-ethylenedioxythiophene (EDOT) monomers. The resulting samples, Ni@PEDOT, and Ni@PEDOT/Au inverse opals, exhibit a three-dimensional ordered macroporous platform with a large surface area and interconnected pore channels, desirable attributes for facile mass transfer and strong reaction for analytes. Structural characterization and material/chemical analysis including scanning electron microscope, X-ray photoelectron spectroscopy, and Raman spectroscopy are carried out. The sensing performances of Ni@PEDOT and Ni@PEDOT/Au inverse opals are explored by conducting CV scans with various concentrations of AA, DA, and UA. By leveraging the structural advantages of inverse opals and the selection of PEDOT/Au composite, the Ni@PEDOT/Au inverse opals reveal improved sensing performances over those of conventional PEDOT-based nanostructured sensors.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3889 ◽  
Author(s):  
Md Ashfaque Hossain Khan ◽  
Mulpuri V. Rao

In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group’s work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2–Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed.


2020 ◽  
Author(s):  
Bernardo Patella ◽  
Roberta Russo ◽  
Alan O'Riordan ◽  
Giuseppe Aiello ◽  
Carmelo Sunseri ◽  
...  

Contamination of water with nitrate ions is a significant problem that affects many areas of the world. The danger from nitrates is not so much their toxicity, rather low, as their transformation into nitrites and in particular into nitrosamines, substances considered to be a possible carcinogenic risk. For this reason, European legislation has set the maximum permissible concentration of nitrates in drinking water at 44 mg/l. Thus, it is clear that a continuous monitoring of nitrate ions is of high technological interest but it must be rapid, easy to perform and directly performed in situ. Electrochemical detection is certainly among the best techniques to obtain the above requirements. In particular, in this work we have developed a nanostructured sensor based on array of copper nanowires obtained with the simple method of galvanic deposition. The nanostructured sensors have a very short response time with a detection limit less than 10 M. Different interfering species were tested finding a negligible effect except for the chlorine ions. However, this problem has been solved by removing chlorine ions from the water through a simple precipitation of chloride compounds with low solubility. Nanostructured sensors were also used to analyze real water samples (rain, river and drinking water). In the case of drinking water, we have measured a concentration of nitrate ions very close to the that measured by conventional laboratory techniques.


2020 ◽  
Author(s):  
Bernardo Patella ◽  
Roberta Russo ◽  
Alan O'Riordan ◽  
Giuseppe Aiello ◽  
Carmelo Sunseri ◽  
...  

Contamination of water with nitrate ions is a significant problem that affects many areas of the world. The danger from nitrates is not so much their toxicity, rather low, as their transformation into nitrites and in particular into nitrosamines, substances considered to be a possible carcinogenic risk. For this reason, European legislation has set the maximum permissible concentration of nitrates in drinking water at 44 mg/l. Thus, it is clear that a continuous monitoring of nitrate ions is of high technological interest but it must be rapid, easy to perform and directly performed in situ. Electrochemical detection is certainly among the best techniques to obtain the above requirements. In particular, in this work we have developed a nanostructured sensor based on array of copper nanowires obtained with the simple method of galvanic deposition. The nanostructured sensors have a very short response time with a detection limit less than 10 M. Different interfering species were tested finding a negligible effect except for the chlorine ions. However, this problem has been solved by removing chlorine ions from the water through a simple precipitation of chloride compounds with low solubility. Nanostructured sensors were also used to analyze real water samples (rain, river and drinking water). In the case of drinking water, we have measured a concentration of nitrate ions very close to the that measured by conventional laboratory techniques.


Sign in / Sign up

Export Citation Format

Share Document