Accelerated Stress Tests and Statistical Reliability Analysis of Metal-Oxide/GaN Nanostructured Sensor Devices

2020 ◽  
Vol 20 (4) ◽  
pp. 742-747
Author(s):  
Md Ashfaque Hossain Khan ◽  
Ratan Debnath ◽  
Abhishek Motayed ◽  
Mulpuri V. Rao
2006 ◽  
Vol 915 ◽  
Author(s):  
Alexey Tomchenko ◽  
Brent Marquis

AbstractIn this presentation, we discuss the development of nanostructured sensor materials based on nanoparticulate metal-oxide suspensions deposited onto MEMS μHPs by microprinting. The preparation of the suspensions is described; the precise control over the thickness of the films through the composition of the metal-oxide suspensions is demonstrated. The procedure of microprinting is described. The deposited films are evaluated as chemical sensors. The sensor performance of the microsensors – sensitivity, stability, speed of operation, and selectivity – is compared with that of analogous traditional thick-film sensors.


2021 ◽  
Author(s):  
Malaya Kumar Biswal M

Reliability of the spacecraft determines the extent of success probability and mission accomplishment. Despite effective testing and integration, the complexity of the space environment affects reliability. In this paper, we investigate the reliability behaviour of interplanetary spacecraft operating at different interplanetary extremities. So, our investigation assesses spacecraft inhered in interplanetary space with the context of the interplanetary boundary (between distinct planetary orbit or within the bounds of heliopause). From the perspective of spacecraft reliability in interplanetary space, we have excluded planetary landers, atmospheric probes, and satellites maneuvering earth orbit. Thus, we have identified 131 spacecraft (includes 82 probes within the bounds of Sun and the Earth, and 49 within the bounds of Earth and Heliopause) along with their gross mass at launch and lifespan. Based on acquired data, we first conduct a non-parametric analysis of spacecraft reliability to obtain two reliability curves for distinct interplanetary extremity. We then perform a parametric fit (Weibull Distribution) over the data to show the analogy of reliability behaviour. Results showed that the spacecraft operating beyond the extremity of the Earth and the Mars exhibits increased reliability than any other interplanetary extremity. In addition to this, we execute reliability analysis over spacecraft of various mass categories (Small-Medium-Large) to testify the reliability effect interpreted by Dubos in 2010. Finally, we discuss the possible factors and causes accountable for the difference in reliability behaviour concerning the spacecraft design and integration, testing, and constraints in considering spacecraft mass.


2016 ◽  
Vol 10 (1) ◽  
pp. 69
Author(s):  
Slamet Widodo

This paper discuss the design and fabrication of NO<sub>2 </sub>gas sensor based on metal oxide using thick film technology was described. The design of gas sensor is consisted of components, i.e. heater, electrode (interdigital fingers) and sensitive layer from In<sub>2</sub>O<sub>3</sub> material. This sensor has been designed as multilayers with heater and both electrodes in one surface, in accordance with miniaturisation aspect, heat distribution and less consumption of energy from the sensor device. The heater and electrode were fabricated on alumina substrate (aluminum oxide/Al<sub>2</sub>O<sub>3</sub>) with silver paste. The In<sub>2</sub>O<sub>3 </sub>layer provides\ resistance change when it is exposed by NO<sub>2</sub> gas. It indicates that this sensor device has a potency to be used as NO<sub>2 </sub>detector.


2018 ◽  
Vol 10 (1) ◽  
pp. 69
Author(s):  
Slamet Widodo

This paper discuss the design and fabrication of NO<sub>2 </sub>gas sensor based on metal oxide using thick film technology was described. The design of gas sensor is consisted of components, i.e. heater, electrode (interdigital fingers) and sensitive layer from In<sub>2</sub>O<sub>3</sub> material. This sensor has been designed as multilayers with heater and both electrodes in one surface, in accordance with miniaturisation aspect, heat distribution and less consumption of energy from the sensor device. The heater and electrode were fabricated on alumina substrate (aluminum oxide/Al<sub>2</sub>O<sub>3</sub>) with silver paste. The In<sub>2</sub>O<sub>3 </sub>layer provides\ resistance change when it is exposed by NO<sub>2</sub> gas. It indicates that this sensor device has a potency to be used as NO<sub>2 </sub>detector.


Sign in / Sign up

Export Citation Format

Share Document