NO2 Gas Sensor Based on SnSe/SnSe2p-n Hetrojunction

2021 ◽  
Vol 21 (9) ◽  
pp. 4779-4785
Author(s):  
Sanju Rani ◽  
Manoj Kumar ◽  
Yogesh Singh ◽  
Monika Tomar ◽  
Anjali Sharma ◽  
...  

Air pollution is a big concern as it causes harm to human health as well as environment. NO2 can cause several respiratory diseases even in low concentration and therefore an efficient sensor for detecting NO2 at room temperature has become one of the priorities of the scientific community. Although two dimensional (2D) materials (MoS2 etc.) have shown potential for NO2 sensing at lower temperatures, but these have poor desorption kinetics. However, these limitations posed by slow desorption can be overcome, if a material in the form of a p-n junction can be suitably employed. In this work, ~150 nm thick SnSe2 thin film has been deposited by thermally evaporating in-house made SnSe2 powder. The film has been studied for its morphological, structural and gas sensing applications. The morphology of the film showed that the film consists of interconnected nanostructures. Detailed Raman studies further revealed that SnSe2 film had 31% SnSe. The SnSe-SnSe2 nanostructured sensor showed a response of ~112% towards 5 ppm NO2 at room temperature (30 °C). The response and recovery times were ~15 seconds and 10 seconds, respectively. Limit of detection for NO2 was in sub-parts per million (sub-ppm) range. The device demonstrated a better response towards NO2 compared to NH3, CH4, and H2. The mechanism of room temperature fast response, recovery and selective detection of NO2 independent of humidity conditions has been discussed based on physisorption, charge transfer, and formation of SnSe-SnSe2 (p-n) nano-junctions. Depositing a nanostructured film consisting of nano-junctions using an industrially viable thermal evaporation technique for sensing a very low concentration of NO2 is the novelty of this work.

RSC Advances ◽  
2017 ◽  
Vol 7 (79) ◽  
pp. 50279-50286 ◽  
Author(s):  
Q. Nguyen Minh ◽  
H. D. Tong ◽  
A. Kuijk ◽  
F. van de Bent ◽  
P. Beekman ◽  
...  

A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2581 ◽  
Author(s):  
Wei Shan ◽  
Zhengqian Fu ◽  
Mingsheng Ma ◽  
Zhifu Liu ◽  
Zhenggang Xue ◽  
...  

Tin(II) monosulfide (SnS) nanosheets were synthesized using SnCl4•5H2O and S powders as raw materials in the presence of H2O via a facile chemical bath method. Orthorhombic phase SnS nanosheets with a thickness of ~100 nm and lateral dimensions of 2~10 μm were obtained by controlling the synthesis parameters. The formation of a SnO2 intermediate is key to the valence reduction of Sn ions (from IV to II) and the formation of SnS. The gas sensors fabricated from SnS nanosheets exhibited an excellent response of 14.86 to 100 ppm ethanol vapor when operating at 160 °C, as well as fast response and recovery times of 23 s and 26 s, respectively. The sensors showed excellent selectivity for the detection of ethanol over acetone, methanol, and ammonia gases, which indicates the SnS nanosheets are promising for high-performance ethanol gas sensing applications.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3542 ◽  
Author(s):  
Tao Guo ◽  
Tianhao Zhou ◽  
Qiulin Tan ◽  
Qianqian Guo ◽  
Fengxiang Lu ◽  
...  

A carbon nanotube/Fe3O4 thin film-based wireless passive gas sensor with better performance is proposed. The sensitive test mechanism of LC (Inductance and capacitance resonant) wireless sensors is analyzed and the reason for choosing Fe3O4 as a gas sensing material is explained. The design and fabrication process of the sensor and the testing method are introduced. Experimental results reveal that the proposed carbon nanotube (CNT)/Fe3O4 based sensor performs well on sensing ammonia (NH3) at room temperature. The sensor exhibits not only an excellent response, good selectivity, and fast response and recovery times at room temperature, but is also characterized by good repeatability and low cost. The results for the wireless gas sensor’s performance for different NH3 gas concentrations are presented. The developed device is promising for the establishment of wireless gas sensors in harsh environments.


2020 ◽  
Vol 18 (10) ◽  
pp. 745-749
Author(s):  
Chih-Chia Wang ◽  
Chiu-Hung Liu ◽  
Hsuan-Hua Hsieh ◽  
Chih-Wei Tang ◽  
Chen-Bin Wang

In this study, a nanostructured zinc oxide/reduced graphene oxide (ZnO/rGO) composite was deposited on a quartz crystal microbalance (QCM) as a toluene gas sensor at room temperature. A series of ZnO, rGO and ZnO/rGO sensing materials was fabricated and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Raman spectroscopy. There was significant efficiency of the ZnO/rGO composite on the sensing performance for toluene. For specific gas fluxes, the nanostructured ZnO/rGO offered sufficient paths and region for vapor diffusion and adsorption. The sensing test results illustrated that the nanostructured ZnO/rGO composite showed significant enhancement in the frequency shifts (△f) for toluene comparing to pure ZnO and rGO. Also, the ZnO/rGO-coated QCM sensor displayed a fast response (both the response and recovery times < 30 s) and reproducibility for sensing toluene gas at room temperature. We believe that the novel insights on ambient temperature gas sensing on nanostructured ZnO/rGO composite could provide a new strategy for preparing a highly efficient sensing materials.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2123
Author(s):  
Ming Liu ◽  
Caochuang Wang ◽  
Pengcheng Li ◽  
Liang Cheng ◽  
Yongming Hu ◽  
...  

Many low-dimensional nanostructured metal oxides (MOXs) with impressive room-temperature gas-sensing characteristics have been synthesized, yet transforming them into relatively robust bulk materials has been quite neglected. Pt-decorated SnO2 nanoparticles with 0.25–2.5 wt% Pt were prepared, and highly attractive room-temperature hydrogen-sensing characteristics were observed for them all through pressing them into pellets. Some pressed pellets were further sintered over a wide temperature range of 600–1200 °C. Though the room-temperature hydrogen-sensing characteristics were greatly degraded in many samples after sintering, those samples with 0.25 wt% Pt and sintered at 800 °C exhibited impressive room-temperature hydrogen-sensing characteristics comparable to those of their counterparts of as-pressed pellets. The variation of room-temperature hydrogen-sensing characteristics among the samples was explained by the facts that the connectivity between SnO2 grains increases with increasing sintering temperature, and Pt promotes oxidation of SnO2 at high temperatures. These results clearly demonstrate that some low-dimensional MOX nanocrystals can be successfully transformed into bulk MOXs with improved robustness and comparable room-temperature gas-sensing characteristics.


2015 ◽  
Vol 10 (1) ◽  
pp. 13-20
Author(s):  
Elisabete Galeazzo ◽  
Marcos C. Moraes ◽  
Henrique E. M. Peres ◽  
Michel O. S. Dantas ◽  
Victor G. C. Lobo ◽  
...  

Intensive research has been focused on investigating new sensing materials, such as carbon nanotubes (CNT) because of their promising characteristics. However, there are challenges related to their application in commercial devices such as sensitivity, compatibility, and complexity of miniaturization, among others. We report the study of the electrical behavior of devices composed by multi-walled carbon nanotubes (MWCNT) deposited between aluminum electrodes on glass substrates by means of dielectrophoresis (DEP), which is a simple and cost-effective method. The devices were fabricated by varying the DEP process time. Remarkable changes in their electric resistance were noticed depending on the MWCNT quantities deposited. Other electrical properties of devices such as high sensitivity, fast response time and stability are also characterized in humid environment. A humidity sensing mechanism is proposed on the basis of charge transfer between adsorbed water molecules and the MWNTC surface or between water and the glass surface.


Author(s):  
Monika Kwoka ◽  
Michal A. Borysiewicz ◽  
Pawel Tomkiewicz ◽  
Anna Piotrowska ◽  
Jacek Szuber

In this paper a novel type of a highly sensitive gas sensor device based on the surface photovoltage effect is described. The developed surface photovoltage gas sensor is based on a reverse Kelvin probe approach. As the active gas sensing electrode the porous ZnO nanostructured thin films are used deposited by the direct current (DC) reactive magnetron sputtering method exhibiting the nanocoral surface morphology combined with an evident surface nonstoichiometry related to the unintentional surface carbon and water vapor contaminations. Among others, the demonstrated SPV gas sensor device exhibits a high sensitivity of 1 ppm to NO2 with a signal to noise ratio of about 50 and a fast response time of several seconds under the room temperature conditions.


RSC Advances ◽  
2020 ◽  
Vol 10 (29) ◽  
pp. 17217-17227 ◽  
Author(s):  
Pritamkumar V. Shinde ◽  
Nanasaheb M. Shinde ◽  
Shoyebmohamad F. Shaikh ◽  
Damin Lee ◽  
Je Moon Yun ◽  
...  

Room-temperature (27 °C) synthesis and carbon dioxide (CO2)-gas-sensing applications of bismuth oxide (Bi2O3) nanosensors obtained via a direct and superfast chemical-bath-deposition method (CBD) with different surface areas and structures.


2007 ◽  
Vol 1035 ◽  
Author(s):  
Amandeep Saluja ◽  
Jie Pan ◽  
Lei Kerr ◽  
Eunjung Cho ◽  
Seth Hubbard

AbstractIn this work, various ZnO nanostructures were synthesized and a detailed study on the effect of different process parameters such as temperature, carrier gas flow, inter-electrode spacing, gas concentration and material properties on gas sensitivity was conducted. Initial ZnO nanoparticles were prepared by a simple solution chemical process and characterized by Secondary Electron Microscopy (SEM) and Brunauer, Emmet and Teller (BET) Sorptometer to demonstrate the morphology and surface area respectively. Sensitivity of nano-platelets and porous films was measured for different concentrations of the analytes (H2, CO). High response was observed at room temperature for H2 gas with sensitivities in excess 80% for 60ppm and about 55% for 80ppm of H2 gas at room temperature were observed for the nano-platelets and the porous films respectively with short response and recovery times of about 200 seconds. The sensitivity of the nano-platelets to CO gas was also measured and found to be about near 90% for 80 ppm CO at operating temperatures of 200 °C.


Sign in / Sign up

Export Citation Format

Share Document