spine structure
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Justin M Saunders ◽  
Carolina Muguruza ◽  
Salvador Sierra ◽  
Jose L Moreno ◽  
Luis F. Callado ◽  
...  

Prenatal environmental insults increase the risk of neurodevelopmental psychiatric conditions in the offspring. Structural modifications of dendritic spines are central to brain development and plasticity. Using maternal immune activation (MIA) as a rodent model of prenatal environmental insult, previous results have reported dendritic structural deficits in the frontal cortex. However, very little is known about the molecular mechanism underlying MIA-induced synaptic structural alterations in the offspring. Using prenatal (E12.5) injection with poly-(I:C) as a mouse MIA model, we show that upregulation of the serotonin 5-HT2A receptor (5-HT2AR) is at least in part responsible for some of the effects of prenatal insults on frontal cortex dendritic spine structure and sensorimotor gating processes. Mechanistically, we report that this upregulation of frontal cortex 5-HT2AR expression is associated with MIA-induced reduction of nuclear translocation of the glucocorticoid receptor (GR) and, consequently, a decrease in the enrichment of GR at the 5-HT2AR promoter. The translational significance of these preclinical findings is supported by data in postmortem human brain samples suggesting dysregulated nuclear GR translocation in frontal cortex of schizophrenia subjects. Repeated (twice a day for 4 days) corticosterone administration augmented frontal cortex 5-HT2AR expression and reduced GR binding to the 5-HT2AR promoter. However, virally (AAV)-mediated augmentation of GR function reduced frontal cortex 5-HT2AR expression and improved sensorimotor gating processes via 5-HT2AR. Together, these data support a negative regulatory relationship between GR signaling and 5-HT2AR expression in mouse frontal cortex that may carry implications for the pathophysiology underlying 5-HT2AR dysregulation in neurodevelopmental psychiatric disorders.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3405
Author(s):  
Arehally M. Mahalakshmi ◽  
Bipul Ray ◽  
Sunanda Tuladhar ◽  
Tousif Ahmed Hediyal ◽  
Praveen Raj ◽  
...  

Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1795
Author(s):  
Raphael Lamprecht

Evidence indicates that long-term memory formation creates long-lasting changes in neuronal morphology within a specific neuronal network that forms the memory trace. Dendritic spines, which include most of the excitatory synapses in excitatory neurons, are formed or eliminated by learning. These changes may be long-lasting and correlate with memory strength. Moreover, learning-induced changes in the morphology of existing spines can also contribute to the formation of the neuronal network that underlies memory. Altering spines morphology after memory consolidation can erase memory. These observations strongly suggest that learning-induced spines modifications can constitute the changes in synaptic connectivity within the neuronal network that form memory and that stabilization of this network maintains long-term memory. The formation and elimination of spines and other finer morphological changes in spines are mediated by the actin cytoskeleton. The actin cytoskeleton forms networks within the spine that support its structure. Therefore, it is believed that the actin cytoskeleton mediates spine morphogenesis induced by learning. Any long-lasting changes in the spine morphology induced by learning require the preservation of the spine actin cytoskeleton network to support and stabilize the spine new structure. However, the actin cytoskeleton is highly dynamic, and the turnover of actin and its regulatory proteins that determine and support the actin cytoskeleton network structure is relatively fast. Molecular models, suggested here, describe ways to overcome the dynamic nature of the actin cytoskeleton and the fast protein turnover and to support an enduring actin cytoskeleton network within the spines, spines stability and long-term memory. These models are based on long-lasting changes in actin regulatory proteins concentrations within the spine or the formation of a long-lasting scaffold and the ability for its recurring rebuilding within the spine. The persistence of the actin cytoskeleton network within the spine is suggested to support long-lasting spine structure and the maintenance of long-term memory.


Author(s):  
Mario de la Fuente Revenga ◽  
Bohan Zhu ◽  
Christopher A. Guevara ◽  
Lynette B. Naler ◽  
Justin M. Saunders ◽  
...  

Clinical evidence suggests a potential therapeutic effect of classic psychedelics for the treatment of depression. The most outstanding and distinct characteristic is the rapid and sustained antidepressant action with one single exposure to the drug. However, the biological substrates and key mediators of psychedelics’ enduring action remain unknown. Here, we show that a single administration of the psychedelic DOI produced fast-acting effects on frontal cortex dendritic spine structure and acceleration of fear extinction via the 5-HT2A receptor. Additionally, a single dose of DOI led to changes in chromatin organization particularly at enhancer regions of genes involved in synaptic assembly that stretched for days after the psychedelic exposure. DOI-induced alterations in neuronal epigenome overlapped with genetic loci associated with schizophrenia, depression and attention deficit hyperactivity disorder. Together, these data support the notion that epigenetic-driven changes in synaptic plasticity operate as the mechanistic substrate of psychedelic’s long-lasting antidepressant action but also warn on the limitations in individuals with underlying risk for psychosis.


Botany ◽  
2020 ◽  
Vol 98 (10) ◽  
pp. 575-587
Author(s):  
Fazle Rabbi ◽  
Karen S. Renzaglia ◽  
Neil W. Ashton ◽  
Dae-Yeon Suh

A robust spore wall was a key requirement for terrestrialization by early plants. Sporopollenin in spore and pollen grain walls is thought to be polymerized and cross-linked to other macromolecular components, partly through oxidative processes involving H2O2. Therefore, we investigated effects of scavengers of reactive oxygen species (ROS) on the formation of spore walls in the moss Physcomitrella patens (Hedw.) Bruch, Schimp & W. Gümbel. Exposure of sporophytes, containing spores in the process of forming walls, to ascorbate, dimethylthiourea, or 4-hydroxy-TEMPO prevented normal wall development in a dose, chemical, and stage-dependent manner. Mature spores, exposed while developing to a ROS scavenger, burst when mounted in water on a flat slide under a coverslip (a phenomenon we named “augmented osmolysis” because they did not burst in phosphate-buffered saline or in water on a depression slide). Additionally, the walls of exposed spores were more susceptible to alkaline hydrolysis than those of the control spores, and some were characterized by discontinuities in the exine, anomalies in perine spine structure, abnormal intine and aperture, and occasionally, wall shedding. Our data support the involvement of oxidative cross-linking in spore-wall development, including sporopollenin polymerization or deposition, as well as a role for ROS in intine/aperture development.


2020 ◽  
Vol 898 (2) ◽  
pp. 101 ◽  
Author(s):  
Shuhong Yang ◽  
Qingmin Zhang ◽  
Zhi Xu ◽  
Jun Zhang ◽  
Ze Zhong ◽  
...  

2020 ◽  
Vol 164 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Lukas Knybel ◽  
Jakub Cvek ◽  
Zuzana Cermakova ◽  
Jaroslav Havelka ◽  
Michaela Pomaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document