scholarly journals CNN for a Connectivity Based Epilepsy Diagnosis with Resting-state EEG

Author(s):  
Berjo Rijnders ◽  
Emin Erkan Korkmaz ◽  
Funda Yildirim

Objective: This study investigates the performance of a CNN algorithm on epilepsy diagnosis. Without pathology, diagnosis involves long and costly electroencephalographic (EEG) monitoring. Novel approaches may overcome this by comparing brain connectivity using graph metrics. This study, however, uses deep learning to learn connectivity patterns directly from easily acquired EEG data. Approach: A convolutional neural network (CNN) algorithm was applied on directed Granger causality (GC) connectivity measures, derived from 50 seconds of resting-state surface EEG recordings from 30 subjects with epilepsy and a 30 subject control group. Main results: The learned CNN filters reflected reduced delta band connectivity in frontal regions and increased left lateralized frontal-posterior gamma band connectivity. A diagnosis accuracy of 85% (F1-score 85%) was achieved by an ensemble of CNN models, each trained on differently prepared data from different electrode combinations. Conclusions: Appropriate preparation of connectivity data enables generic CNN algorithms to be used for detection of multiple discriminative epileptic features. Differential patterns revealed in this study may help to shed light on underlying altered cognitive abilities in epilepsy patients. Significance: The accuracy achieved in this study shows that, in combination with other methods, this approach could prove a valuable clinical decision support system for epilepsy diagnosis.

2013 ◽  
Vol 16 (5) ◽  
pp. 962-969 ◽  
Author(s):  
Nienke M. Schutte ◽  
Narelle K. Hansell ◽  
Eco J. C. de Geus ◽  
Nicholas G. Martin ◽  
Margaret J. Wright ◽  
...  

We examined the genetic architecture of functional brain connectivity measures in resting state electroencephalographic (EEG) recordings. Previous studies in Dutch twins have suggested that genetic factors are a main source of variance in functional brain connectivity derived from EEG recordings. In addition, qualitative descriptors of the brain network derived from graph analysis — network clustering and average path length — are also heritable traits. Here we replicated previous findings for connectivity, quantified by the synchronization likelihood, and the graph theoretical parameters cluster coefficient and path length in an Australian sample of 16-year-old twins (879) and their siblings (93). Modeling of monozygotic and dizygotic twins and sibling resemblance indicated heritability estimates of the synchronization likelihood (27–74%) and cluster coefficient and path length in the alpha and theta band (40–44% and 23–40% respectively) and path length in the beta band frequency (41%). This corroborates synchronization likelihood and its graph theoretical derivatives cluster coefficient and path length as potential endophenotypes for behavioral traits and neurological disorders.


2021 ◽  
Vol 15 ◽  
Author(s):  
Andy Schumann ◽  
Feliberto de la Cruz ◽  
Stefanie Köhler ◽  
Lisa Brotte ◽  
Karl-Jürgen Bär

BackgroundHeart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects.MethodsHRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump‘n’run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC.ResultsFirst, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6 ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex, and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions.ConclusionOur results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jerome Baranger ◽  
Charlie Demene ◽  
Alice Frerot ◽  
Flora Faure ◽  
Catherine Delanoë ◽  
...  

AbstractClinicians have long been interested in functional brain monitoring, as reversible functional losses often precedes observable irreversible structural insults. By characterizing neonatal functional cerebral networks, resting-state functional connectivity is envisioned to provide early markers of cognitive impairments. Here we present a pioneering bedside deep brain resting-state functional connectivity imaging at 250-μm resolution on human neonates using functional ultrasound. Signal correlations between cerebral regions unveil interhemispheric connectivity in very preterm newborns. Furthermore, fine-grain correlations between homologous pixels are consistent with white/grey matter organization. Finally, dynamic resting-state connectivity reveals a significant occurrence decrease of thalamo-cortical networks for very preterm neonates as compared to control term newborns. The same method also shows abnormal patterns in a congenital seizure disorder case compared with the control group. These results pave the way to infants’ brain continuous monitoring and may enable the identification of abnormal brain development at the bedside.


2020 ◽  
Author(s):  
Andy Schumann ◽  
Feliberto de la Cruz ◽  
Stefanie Köhler ◽  
Lisa Brotte ◽  
Karl-Jürgen Bär

AbstractBackgroundHeart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects.MethodsHRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump‘n’run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC.ResultsFirst, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, left anterior insula, right amygdala, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.5 beats/min and an increased RMSSD as a measure of HRV by 10.1ms (33%) after the intervention. Functional connectivity of the VMPFC increased mainly to the right anterior insula, the dorsal anterior cingulate cortex and the dorsolateral prefrontal cortex after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions.ConclusionOur results show that increased vagal modulation induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.


2021 ◽  
Author(s):  
Shachar Gal ◽  
Niv Tik ◽  
Michal Bernstein-Eliav ◽  
Ido Tavor

Relating individual differences in cognitive traits to brain functional organization is a long-lasting challenge for the neuroscience community. Individual intelligence scores were previously predicted from whole-brain connectivity patterns, extracted from functional magnetic resonance imaging (fMRI) data acquired at rest. Recently, it was shown that task-induced brain activation maps outperform these resting-state connectivity patterns in predicting individual intelligence, suggesting that a cognitively demanding environment improves prediction of cognitive abilities. Here, we use data from the Human Connectome Project to predict task-induced brain activation maps from resting-state fMRI, and proceed to use these predicted activity maps to further predict individual differences in a variety of traits. While models based on original task activation maps remain the most accurate, models based on predicted maps significantly outperformed those based on the resting-state connectome. Thus, we provide a promising approach for the evaluation of measures of human behavior from brain activation maps, that could be used without having participants actually perform the tasks.


2012 ◽  
Vol 22 (07) ◽  
pp. 1250158 ◽  
Author(s):  
FABRIZIO DE VICO FALLANI ◽  
JLENIA TOPPI ◽  
CLAUDIA DI LANZO ◽  
GIOVANNI VECCHIATO ◽  
LAURA ASTOLFI ◽  
...  

The concept of redundancy is a critical resource of the brain enhancing the resilience to neural damages and dysfunctions. In the present work, we propose a graph-based methodology to investigate the connectivity redundancy in brain networks. By taking into account all the possible paths between pairs of nodes, we considered three complementary indexes, characterizing the network redundancy (i) at the global level, i.e. the scalar redundancy (ii) across different path lengths, i.e. the vectorial redundancy (iii) between node pairs, i.e. the matricial redundancy. We used this procedure to investigate the functional connectivity estimated from a dataset of high-density EEG signals in a group of healthy subjects during a no-task resting state. The statistical comparison with a benchmark dataset of random networks, having the same number of nodes and links of the EEG nets, revealed a significant (p < 0.05) difference for all the three indexes. In particular, the redundancy in the EEG networks, for each frequency band, appears radically higher than random graphs, thus revealing a natural tendency of the brain to present multiple parallel interactions between different specialized areas. Notably, the matricial redundancy showed a high (p < 0.05) redundancy between the scalp sensors over the parieto-occipital areas in the Alpha range of EEG oscillations (7.5–12.5 Hz), which is known to be the most responsive channel during resting state conditions.


2020 ◽  
Author(s):  
Jacob van Doorn ◽  
Mengqi Xing ◽  
B. Rael Cahn ◽  
Arnaud Delorme ◽  
Olusola Ajilore ◽  
...  

AbstractAlterations in brain connectivity has been shown for many disease states and groups of people from different levels of cognitive training. To study dynamic functional connectivity, we propose a method for a personalized connectomic state space called Thought Chart. Experienced meditators are an interesting group of healthy subjects for brain connectivity analyses due to their demonstrated differences in resting state dynamics, and altered brain connectivity has been implicated as a potential factor in several psychiatric disorders. Three distinct techniques of meditation are explored: Isha Yoga, Himalayan Yoga, and Vipassana, as well as a meditation-naïve group of individuals. All individuals participated in a breath awareness task, an autobiographical thinking task, and one of three different meditation practices according to their expertise, while being recorded by a 64-electrode electroencephalogram (EEG). The functional brain connectivity was estimated using weighted phase lag index (WPLI) and the connectivity dynamics were investigated using a within-individual formulation of Thought Chart, a previously proposed dimensionality reduction method which utilizes manifold learning to map out a state space of functional connectivity. Results showed that the two meditation tasks (breath awareness task and own form of meditation) in all groups were found to have consistently different functional connectivity patterns relative to those of the instructed mind-wandering (IMW) tasks in each individual, as measured using the Hausdorff distance in the state space. The specific meditation state was found to be most similar to the breath awareness state in all groups, as expected in these meditation traditions which all incorporate breath awareness training in their practice trajectory. The difference in connectivity was found to not be solely driven by specific frequency bands. These results demonstrate that the within-individual form of Thought Chart consistently and reliably separates similar tasks among healthy meditators and non-meditators during resting state-like EEG recordings. Unexpectedly, we found the dissimilarity between breath awareness/meditation and IMW, measured via Hausdorff distance, regardless of meditation experience or tradition, with no significant group differences.


2003 ◽  
Vol 42 (05) ◽  
pp. 190-196 ◽  
Author(s):  
H. Amthauer ◽  
M. Merschhemke ◽  
L. Lüdemann ◽  
E. Hartkop ◽  
J. Ruf ◽  
...  

Summary: Aim: Evaluation of the use of statistical parametrical mapping (SPM) of FDG-PET for seizure lateralization in frontal lobe epilepsy. Patients: 38 patients with suspected frontal lobe epilepsy supported by clinical findings and video-EEG monitoring. Method: Statistical parametrical maps were generated by subtraction of individual scans from a control group, formed by 16 patients with negative neurological/psychiatric history and no abnormalities in the MR scan. The scans were also analyzed visually as well as semiquantitatively by manually drawn ROIs. Results: SPM showed a better accordance to the results of surface EEG monitoring compared with visual scan analysis and ROI quantification. In comparison with intracranial EEG recordings, the best performance was achieved by combining the ROI based quantification with SPM analysis. Conclusion: These findings suggest that SPM analysis of FDG-PET data could be a useful as complementary tool in the evaluation of seizure focus lateralization in patients with supposed frontal lobe epilepsy.


2015 ◽  
Vol 30 (4) ◽  
pp. 542-547 ◽  
Author(s):  
B. Kovács ◽  
S. Kéri

AbstractIntranasally administered oxytocin gained popularity as a hormone facilitating trust, cooperation, and affiliation. However, the long-term consequences of oxytocin use are not known. Given that intensive media attention and advertisements of the “love hormone” might lead to a new form of misuse, we conducted an online survey and identified 41 individuals with oxytocin misuse. Misuse will be proposed throughout the manuscript instead of the more accurate “off-label use” for reasons of simplicity. We compared the social functions of oxytocin users with that of 41 matched control volunteers. We administered the “Reading the Mind in the Eyes Test” (RMET) and the National Institute of Health (NIH) Toolbox Adult Social Relationship Scales (NIH-ASRS) to delineate affective “theory of mind” and real-life social functions, respectively. Resting-state functional brain connectivity analyses were also carried out. Results revealed no significant differences between individuals with oxytocin misuse and control participants on the RMET and NIH-ASRS. However, individuals with oxytocin misuse showed an increased connectivity between the right amygdala and dorsal anterior cingulate cortex relative to the control group. Higher estimated cumulative doses of oxytocin were associated with enhanced amygdala-cingulate connectivity. These results show that individuals who have self-selected for and pursued oxytocin use have increased amygdala-cingulate resting connectivity, compared to individuals who have not used oxytocin, despite the lack of differences in RMET and NIH-ASRS scores. Further longitudinal studies are warranted to investigate the cause-effect relationship between oxytocin use and brain connectivity.


2020 ◽  
Author(s):  
Heather R. McGregor ◽  
Jessica K. Lee ◽  
Edwin R. Mulder ◽  
Yiri E. De Dios ◽  
Nichole E. Beltran ◽  
...  

ABSTRACTAstronauts are exposed to microgravity and elevated CO2 levels onboard the International Space Station. Little is known about how microgravity and elevated CO2 combine to affect the brain and sensorimotor performance during and after spaceflight. Here we examined changes in resting-state functional connectivity (FC) and sensorimotor behavior associated with a spaceflight analog environment. Participants underwent 30 days of strict 6° head-down tilt bed rest with elevated ambient CO2 (HDBR+CO2). Resting-state functional magnetic resonance imaging and sensorimotor assessments were collected 13 and 7 days prior to bed rest, on days 7 and 29 of bed rest, and 0, 5, 12, and 13 days following bed rest. We assessed the time course of FC changes from before, during, to after HDBR+CO2. We then compared the observed connectivity changes with those of a HDBR control group, which underwent HDBR in standard ambient air. Moreover, we assessed associations between post-HDBR+CO2 FC changes and alterations in sensorimotor performance. HDBR+CO2 was associated with significant changes in functional connectivity between vestibular, visual, somatosensory and motor brain areas. Several of these sensory and motor regions showed post-HDBR+CO2 FC changes that were significantly associated with alterations in sensorimotor performance. We propose that these FC changes reflect multisensory reweighting associated with adaptation to the HDBR+CO2 microgravity analog environment. This knowledge will further improve HDBR as a model of microgravity exposure and contribute to our knowledge of brain and performance changes during and after spaceflight.


Sign in / Sign up

Export Citation Format

Share Document