sheared convective boundary layer
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
A. V. Debolskiy ◽  
V. M. Stepanenko ◽  
A. V. Glazunov ◽  
S. S. Zilitinkevich

The paper discusses approaches to the construction of integral models of the convective boundary layer (CBL), based on the concept of complete mixing. To test analytic bulk models and the basic hypotheses of similarity, we use the results of eddy modeling (LES – Large Eddy Simulation). The empirical constants of the CBL integral models obtained according to the LES data for the case of free convection, are in good agreement with the previously published data of laboratory experiments. It is also shown that the flow of kinetic energy from the upper boundary of the CPS, carried out by gravitational waves, is small compared with other components of the balance of turbulent kinetic energy (TKE) in the convective layer. Parametrization of TKE generation for the case of sheared convective boundary layer in terms of the friction velocity and the average wind velocity in the CBL derived; resulting dimensionless constants are obtained from LES data. The results of the work allow us to formulate an integral model of the shear KPS suitable for practical use.


2015 ◽  
Vol 144 (1) ◽  
pp. 273-293 ◽  
Author(s):  
Christopher J. Nowotarski ◽  
Paul M. Markowski

Abstract This study investigates the changes that simulated supercell thunderstorms impart on their surroundings. Supercells are simulated in a strongly sheared convective boundary layer comprising horizontal roll vortices. In sensitivity tests, the effects of cloud shading on the near-storm environment are explored through the removal of cloud ice, water, and hydrometeor effects on parameterized radiation. All of the simulated supercells increase the low-level shear in their proximal environment; however, this effect is more pronounced when cloud shading is included. Shading stabilizes the boundary layer beneath the cirrus anvil, diminishes boundary layer rolls and their attendant thermodynamic perturbations, and reduces the intensity of resolved turbulent mixing in the convective boundary layer. Anvil shading also acts to reduce the buoyancy of inflow air and the horizontal buoyancy gradient along the forward-flank outflow boundary.


2015 ◽  
Vol 143 (1) ◽  
pp. 272-297 ◽  
Author(s):  
Christopher J. Nowotarski ◽  
Paul M. Markowski ◽  
Yvette P. Richardson ◽  
George H. Bryan

Abstract Simulations of supercell thunderstorms in a sheared convective boundary layer (CBL), characterized by quasi-two-dimensional rolls, are compared with simulations having horizontally homogeneous environments. The effects of boundary layer convection on the general characteristics and the low-level mesocyclones of the simulated supercells are investigated for rolls oriented either perpendicular or parallel to storm motion, as well as with and without the effects of cloud shading. Bulk measures of storm strength are not greatly affected by the presence of rolls in the near-storm environment. Though boundary layer convection diminishes with time under the anvil shadow of the supercells when cloud shading is allowed, simulations without cloud shading suggest that rolls affect the morphology and evolution of supercell low-level mesocyclones. Initially, CBL vertical vorticity perturbations are enhanced along the supercell outflow boundary, resulting in nonnegligible near-ground vertical vorticity regardless of roll orientation. At later times, supercells that move perpendicular to the axes of rolls in their environment have low-level mesocyclones with weaker, less persistent circulation compared to those in a similar horizontally homogeneous environment. For storms moving parallel to rolls, the opposite result is found: that is, low-level mesocyclone circulation is often enhanced relative to that in the corresponding horizontally homogeneous environment.


2007 ◽  
Vol 64 (3) ◽  
pp. 786-807 ◽  
Author(s):  
Robert Conzemius ◽  
Evgeni Fedorovich

Abstract A set of first-order model (FOM) equations, describing the sheared convective boundary layer (CBL) evolution, is derived. The model output is compared with predictions of the zero-order bulk model (ZOM) for the same CBL type. Large eddy simulation (LES) data are employed to test both models. The results show an advantage of the FOM over the ZOM in the prediction of entrainment, but in many CBL cases, the predictions by the two models are fairly close. Despite its relative simplicity, the ZOM is able to quantify the effects of shear production and dissipation in an integral sense—as long as the constants describing the integral dissipation of shear- and buoyancy-produced turbulence kinetic energy (TKE) are prescribed appropriately and the shear is weak enough that the denominator of the ZOM entrainment equation does not approach zero, causing a numerical instability in the solutions. Overall, the FOM better predicts the entrainment rate due to its ability to avoid this instability. Also, the FOM in a more physically consistent manner reproduces the sheared CBL entrainment zone, whose depth is controlled by a balance among shear generation, buoyancy consumption, and dissipation of TKE. Such balance is manifested by nearly constant values of Richardson numbers observed in the entrainment zone of simulated sheared CBLs. Conducted model tests support the conclusion that the surface shear generation of TKE and its corresponding dissipation, as well as the nonstationary terms, can be omitted from the integral TKE balance equation.


2006 ◽  
Vol 120 (3) ◽  
pp. 455-475 ◽  
Author(s):  
Si-Wan Kim ◽  
Soon-Ung Park ◽  
David Pino ◽  
Jordi Vilà-Guerau de Arellano

Sign in / Sign up

Export Citation Format

Share Document