scholarly journals Analysis of Turbulent Characteristics of Sheared Convective Boundary Layer under Different Shear and Potential Temperature Gradients

Author(s):  
Anran Li ◽  
Wenxian Lin ◽  
Wenfeng Gao ◽  
Tao Liu ◽  
Yaowen Xia
2018 ◽  
Vol 75 (7) ◽  
pp. 2317-2336 ◽  
Author(s):  
Bowen Zhou ◽  
Shiwei Sun ◽  
Kai Yao ◽  
Kefeng Zhu

Abstract Turbulent mixing in the daytime convective boundary layer (CBL) is carried out by organized nonlocal updrafts and smaller local eddies. In the upper mixed layer of the CBL, heat fluxes associated with nonlocal updrafts are directed up the local potential temperature gradient. To reproduce such countergradient behavior in parameterizations, a class of planetary boundary layer schemes adopts a countergradient correction term in addition to the classic downgradient eddy-diffusion term. Such schemes are popular because of their simple formulation and effective performance. This study reexamines those schemes to investigate the physical representations of the gradient and countergradient (GCG) terms, and to rebut the often-implied association of the GCG terms with heat fluxes due to local and nonlocal (LNL) eddies. To do so, large-eddy simulations (LESs) of six idealized CBL cases are performed. The GCG fluxes are computed a priori with horizontally averaged LES data, while the LNL fluxes are diagnosed through conditional sampling and Fourier decomposition of the LES flow field. It is found that in the upper mixed layer, the gradient term predicts downward fluxes in the presence of positive mean potential temperature gradient but is compensated by the upward countergradient correction flux, which is larger than the total heat flux. However, neither downward local fluxes nor larger-than-total nonlocal fluxes are diagnosed from LES. The difference reflects reduced turbulence efficiency for GCG fluxes and, in terms of physics, conceptual deficiencies in the GCG representation of CBL heat fluxes.


2020 ◽  
Vol 77 (2) ◽  
pp. 435-442
Author(s):  
John Thuburn ◽  
Georgios A. Efstathiou

Abstract We hypothesize that the convective atmospheric boundary layer is marginally stable when the damping effects of turbulence are taken into account. If the effects of turbulence are modeled as an eddy viscosity and diffusivity, then an idealized analysis based on the hypothesis predicts a well-known scaling for the magnitude of the eddy viscosity and diffusivity. It also predicts that the marginally stable modes should have vertical and horizontal scales comparable to the boundary layer depth. A more quantitative numerical linear stability analysis is presented for a realistic convective boundary layer potential temperature profile and is found to support the hypothesis.


2012 ◽  
Vol 12 (19) ◽  
pp. 9335-9353 ◽  
Author(s):  
H. G. Ouwersloot ◽  
J. Vilà-Guerau de Arellano ◽  
A. C. Nölscher ◽  
M. C. Krol ◽  
L. N. Ganzeveld ◽  
...  

Abstract. We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection) on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale) in chemistry-transport models and in the interpretation of observational data.


2007 ◽  
Vol 64 (3) ◽  
pp. 786-807 ◽  
Author(s):  
Robert Conzemius ◽  
Evgeni Fedorovich

Abstract A set of first-order model (FOM) equations, describing the sheared convective boundary layer (CBL) evolution, is derived. The model output is compared with predictions of the zero-order bulk model (ZOM) for the same CBL type. Large eddy simulation (LES) data are employed to test both models. The results show an advantage of the FOM over the ZOM in the prediction of entrainment, but in many CBL cases, the predictions by the two models are fairly close. Despite its relative simplicity, the ZOM is able to quantify the effects of shear production and dissipation in an integral sense—as long as the constants describing the integral dissipation of shear- and buoyancy-produced turbulence kinetic energy (TKE) are prescribed appropriately and the shear is weak enough that the denominator of the ZOM entrainment equation does not approach zero, causing a numerical instability in the solutions. Overall, the FOM better predicts the entrainment rate due to its ability to avoid this instability. Also, the FOM in a more physically consistent manner reproduces the sheared CBL entrainment zone, whose depth is controlled by a balance among shear generation, buoyancy consumption, and dissipation of TKE. Such balance is manifested by nearly constant values of Richardson numbers observed in the entrainment zone of simulated sheared CBLs. Conducted model tests support the conclusion that the surface shear generation of TKE and its corresponding dissipation, as well as the nonstationary terms, can be omitted from the integral TKE balance equation.


2015 ◽  
Vol 144 (1) ◽  
pp. 273-293 ◽  
Author(s):  
Christopher J. Nowotarski ◽  
Paul M. Markowski

Abstract This study investigates the changes that simulated supercell thunderstorms impart on their surroundings. Supercells are simulated in a strongly sheared convective boundary layer comprising horizontal roll vortices. In sensitivity tests, the effects of cloud shading on the near-storm environment are explored through the removal of cloud ice, water, and hydrometeor effects on parameterized radiation. All of the simulated supercells increase the low-level shear in their proximal environment; however, this effect is more pronounced when cloud shading is included. Shading stabilizes the boundary layer beneath the cirrus anvil, diminishes boundary layer rolls and their attendant thermodynamic perturbations, and reduces the intensity of resolved turbulent mixing in the convective boundary layer. Anvil shading also acts to reduce the buoyancy of inflow air and the horizontal buoyancy gradient along the forward-flank outflow boundary.


2019 ◽  
Vol 147 (10) ◽  
pp. 3825-3841 ◽  
Author(s):  
Xiao-Ming Hu ◽  
Ming Xue ◽  
Xiaolan Li

Abstract Since the 1950s, a countergradient flux term has been added to some K-profile-based first-order PBL schemes, allowing them to simulate the slightly statically stable upper part of the convective boundary layer (CBL) observed in a limited number of aircraft soundings. There is, however, substantial uncertainty in inferring detailed CBL structure, particularly the level of neutral stability (zn), from such a limited number of soundings. In this study, composite profiles of potential temperature are derived from multiyear early afternoon radiosonde data over Beijing, China. The CBLs become slightly stable above zn ~ 0.31–0.33zi, where zi is the CBL depth. These composite profiles are used to evaluate two K-profile PBL schemes, the Yonsei University (YSU) and Shin–Hong (SH) schemes, and to optimize the latter through parameter calibration. In one-dimensional simulations using the WRF Model, YSU simulates a stable CBL above zn ~ 0.24zi, while default SH simulates a thick superadiabatic lower CBL with zn ~ 0.45zi. Experiments with the analytic solution of a K-profile PBL model show that adjusting the countergradient flux profile leads to significant changes in the thermal structure of CBL, informing the calibration of SH. The SH scheme replaces the countergradient heat flux term in its predecessor YSU scheme with a three-layer nonlocal heating profile, with fnl specifying the peak value and z*SL specifying the height of this peak value. Increasing fnl to 1.1 lowers zn, but to too low a value, while simultaneously increasing z*SL to 0.4 leads to a more appropriate zn ~ 0.36zi. The calibrated SH scheme performs better than YSU and default SH for real CBLs.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Anran Li ◽  
Wenfeng Gao ◽  
Tao Liu

Studying the thickness of the convective boundary layer (CBL) is helpful for understanding atmospheric structure and the diffusion of air pollutants. When there is velocity shear in CBL, the flow field structure is very different from that of shear-free CBL, which makes the thickness model of the entrainment zone deviate. A large-eddy simulation (LES) approach is carried out for a horizontally homogeneous, atmospheric CBL, with a shear effect promoted by velocity difference to explore the bulk scaling model of the entrainment zone thickness. The post-processed data indicate that the existing bulk scaling models cannot synthetically represent the effects of shear and buoyancy on entrainment, resulting in reduced accuracy or limited applicability. Based on the fraction of turbulent kinetic energy (TKE) used for entrainment, a different form of the characteristic velocity scale, which includes the shear effect, is proposed, and a modified bulk scaling model that uses a potential temperature gradient to replace the potential temperature jump across the entrainment zone is constructed with the numerical results. The new model is found to provide an improved prediction of the entrainment zone thickness in a sheared CBL.


Sign in / Sign up

Export Citation Format

Share Document